123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230 |
- import sys
- from typing import (
- Any,
- Dict,
- Generic,
- List,
- Optional,
- overload,
- Set,
- Tuple,
- TypeVar,
- Union,
- )
- import numpy as np
- import numpy.typing as npt
- from scipy.sparse import coo_matrix, dok_matrix
- from typing import Literal
- # TODO: Replace `ndarray` with a 1D float64 array when possible
- _BoxType = TypeVar("_BoxType", None, npt.NDArray[np.float64])
- # Copied from `numpy.typing._scalar_like._ScalarLike`
- # TODO: Expand with 0D arrays once we have shape support
- _ArrayLike0D = Union[
- bool,
- int,
- float,
- complex,
- str,
- bytes,
- np.generic,
- ]
- _WeightType = Union[
- npt.ArrayLike,
- Tuple[Optional[npt.ArrayLike], Optional[npt.ArrayLike]],
- ]
- class cKDTreeNode:
- @property
- def data_points(self) -> npt.NDArray[np.float64]: ...
- @property
- def indices(self) -> npt.NDArray[np.intp]: ...
- # These are read-only attributes in cython, which behave like properties
- @property
- def level(self) -> int: ...
- @property
- def split_dim(self) -> int: ...
- @property
- def children(self) -> int: ...
- @property
- def start_idx(self) -> int: ...
- @property
- def end_idx(self) -> int: ...
- @property
- def split(self) -> float: ...
- @property
- def lesser(self) -> Optional[cKDTreeNode]: ...
- @property
- def greater(self) -> Optional[cKDTreeNode]: ...
- class cKDTree(Generic[_BoxType]):
- @property
- def n(self) -> int: ...
- @property
- def m(self) -> int: ...
- @property
- def leafsize(self) -> int: ...
- @property
- def size(self) -> int: ...
- @property
- def tree(self) -> cKDTreeNode: ...
- # These are read-only attributes in cython, which behave like properties
- @property
- def data(self) -> npt.NDArray[np.float64]: ...
- @property
- def maxes(self) -> npt.NDArray[np.float64]: ...
- @property
- def mins(self) -> npt.NDArray[np.float64]: ...
- @property
- def indices(self) -> npt.NDArray[np.float64]: ...
- @property
- def boxsize(self) -> _BoxType: ...
- # NOTE: In practice `__init__` is used as constructor, not `__new__`.
- # The latter gives us more flexibility in setting the generic parameter
- # though.
- @overload
- def __new__( # type: ignore[misc]
- cls,
- data: npt.ArrayLike,
- leafsize: int = ...,
- compact_nodes: bool = ...,
- copy_data: bool = ...,
- balanced_tree: bool = ...,
- boxsize: None = ...,
- ) -> cKDTree[None]: ...
- @overload
- def __new__(
- cls,
- data: npt.ArrayLike,
- leafsize: int = ...,
- compact_nodes: bool = ...,
- copy_data: bool = ...,
- balanced_tree: bool = ...,
- boxsize: npt.ArrayLike = ...,
- ) -> cKDTree[npt.NDArray[np.float64]]: ...
- # TODO: returns a 2-tuple of scalars if `x.ndim == 1` and `k == 1`,
- # returns a 2-tuple of arrays otherwise
- def query(
- self,
- x: npt.ArrayLike,
- k: npt.ArrayLike = ...,
- eps: float = ...,
- p: float = ...,
- distance_upper_bound: float = ...,
- workers: Optional[int] = ...,
- ) -> Tuple[Any, Any]: ...
- # TODO: returns a list scalars if `x.ndim <= 1`,
- # returns an object array of lists otherwise
- def query_ball_point(
- self,
- x: npt.ArrayLike,
- r: npt.ArrayLike,
- p: float,
- eps: float = ...,
- workers: Optional[int] = ...,
- return_sorted: Optional[bool] = ...,
- return_length: bool = ...
- ) -> Any: ...
- def query_ball_tree(
- self,
- other: cKDTree,
- r: float,
- p: float,
- eps: float = ...,
- ) -> List[List[int]]: ...
- @overload
- def query_pairs( # type: ignore[misc]
- self,
- r: float,
- p: float = ...,
- eps: float = ...,
- output_type: Literal["set"] = ...,
- ) -> Set[Tuple[int, int]]: ...
- @overload
- def query_pairs(
- self,
- r: float,
- p: float = ...,
- eps: float = ...,
- output_type: Literal["ndarray"] = ...,
- ) -> npt.NDArray[np.intp]: ...
- @overload
- def count_neighbors( # type: ignore[misc]
- self,
- other: cKDTree,
- r: _ArrayLike0D,
- p: float = ...,
- weights: None | Tuple[None, None] = ...,
- cumulative: bool = ...,
- ) -> int: ...
- @overload
- def count_neighbors( # type: ignore[misc]
- self,
- other: cKDTree,
- r: _ArrayLike0D,
- p: float = ...,
- weights: _WeightType = ...,
- cumulative: bool = ...,
- ) -> np.float64: ...
- @overload
- def count_neighbors( # type: ignore[misc]
- self,
- other: cKDTree,
- r: npt.ArrayLike,
- p: float = ...,
- weights: None | Tuple[None, None] = ...,
- cumulative: bool = ...,
- ) -> npt.NDArray[np.intp]: ...
- @overload
- def count_neighbors(
- self,
- other: cKDTree,
- r: npt.ArrayLike,
- p: float = ...,
- weights: _WeightType = ...,
- cumulative: bool = ...,
- ) -> npt.NDArray[np.float64]: ...
- @overload
- def sparse_distance_matrix( # type: ignore[misc]
- self,
- other: cKDTree,
- max_distance: float,
- p: float = ...,
- output_type: Literal["dok_matrix"] = ...,
- ) -> dok_matrix: ...
- @overload
- def sparse_distance_matrix( # type: ignore[misc]
- self,
- other: cKDTree,
- max_distance: float,
- p: float = ...,
- output_type: Literal["coo_matrix"] = ...,
- ) -> coo_matrix: ...
- @overload
- def sparse_distance_matrix( # type: ignore[misc]
- self,
- other: cKDTree,
- max_distance: float,
- p: float = ...,
- output_type: Literal["dict"] = ...,
- ) -> Dict[Tuple[int, int], float]: ...
- @overload
- def sparse_distance_matrix(
- self,
- other: cKDTree,
- max_distance: float,
- p: float = ...,
- output_type: Literal["ndarray"] = ...,
- ) -> npt.NDArray[np.void]: ...
|