123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169 |
- import numpy as np
- from numpy.testing import assert_array_almost_equal, assert_
- from scipy.sparse import csr_matrix, hstack
- import pytest
- def _check_csr_rowslice(i, sl, X, Xcsr):
- np_slice = X[i, sl]
- csr_slice = Xcsr[i, sl]
- assert_array_almost_equal(np_slice, csr_slice.toarray()[0])
- assert_(type(csr_slice) is csr_matrix)
- def test_csr_rowslice():
- N = 10
- np.random.seed(0)
- X = np.random.random((N, N))
- X[X > 0.7] = 0
- Xcsr = csr_matrix(X)
- slices = [slice(None, None, None),
- slice(None, None, -1),
- slice(1, -2, 2),
- slice(-2, 1, -2)]
- for i in range(N):
- for sl in slices:
- _check_csr_rowslice(i, sl, X, Xcsr)
- def test_csr_getrow():
- N = 10
- np.random.seed(0)
- X = np.random.random((N, N))
- X[X > 0.7] = 0
- Xcsr = csr_matrix(X)
- for i in range(N):
- arr_row = X[i:i + 1, :]
- csr_row = Xcsr.getrow(i)
- assert_array_almost_equal(arr_row, csr_row.toarray())
- assert_(type(csr_row) is csr_matrix)
- def test_csr_getcol():
- N = 10
- np.random.seed(0)
- X = np.random.random((N, N))
- X[X > 0.7] = 0
- Xcsr = csr_matrix(X)
- for i in range(N):
- arr_col = X[:, i:i + 1]
- csr_col = Xcsr.getcol(i)
- assert_array_almost_equal(arr_col, csr_col.toarray())
- assert_(type(csr_col) is csr_matrix)
- @pytest.mark.parametrize("matrix_input, axis, expected_shape",
- [(csr_matrix([[1, 0, 0, 0],
- [0, 0, 0, 0],
- [0, 2, 3, 0]]),
- 0, (0, 4)),
- (csr_matrix([[1, 0, 0, 0],
- [0, 0, 0, 0],
- [0, 2, 3, 0]]),
- 1, (3, 0)),
- (csr_matrix([[1, 0, 0, 0],
- [0, 0, 0, 0],
- [0, 2, 3, 0]]),
- 'both', (0, 0)),
- (csr_matrix([[0, 1, 0, 0, 0],
- [0, 0, 0, 0, 0],
- [0, 0, 2, 3, 0]]),
- 0, (0, 5))])
- def test_csr_empty_slices(matrix_input, axis, expected_shape):
- # see gh-11127 for related discussion
- slice_1 = matrix_input.A.shape[0] - 1
- slice_2 = slice_1
- slice_3 = slice_2 - 1
- if axis == 0:
- actual_shape_1 = matrix_input[slice_1:slice_2, :].A.shape
- actual_shape_2 = matrix_input[slice_1:slice_3, :].A.shape
- elif axis == 1:
- actual_shape_1 = matrix_input[:, slice_1:slice_2].A.shape
- actual_shape_2 = matrix_input[:, slice_1:slice_3].A.shape
- elif axis == 'both':
- actual_shape_1 = matrix_input[slice_1:slice_2, slice_1:slice_2].A.shape
- actual_shape_2 = matrix_input[slice_1:slice_3, slice_1:slice_3].A.shape
- assert actual_shape_1 == expected_shape
- assert actual_shape_1 == actual_shape_2
- def test_csr_bool_indexing():
- data = csr_matrix([[0, 1, 2], [3, 4, 5], [6, 7, 8]])
- list_indices1 = [False, True, False]
- array_indices1 = np.array(list_indices1)
- list_indices2 = [[False, True, False], [False, True, False], [False, True, False]]
- array_indices2 = np.array(list_indices2)
- list_indices3 = ([False, True, False], [False, True, False])
- array_indices3 = (np.array(list_indices3[0]), np.array(list_indices3[1]))
- slice_list1 = data[list_indices1].toarray()
- slice_array1 = data[array_indices1].toarray()
- slice_list2 = data[list_indices2]
- slice_array2 = data[array_indices2]
- slice_list3 = data[list_indices3]
- slice_array3 = data[array_indices3]
- assert (slice_list1 == slice_array1).all()
- assert (slice_list2 == slice_array2).all()
- assert (slice_list3 == slice_array3).all()
- def test_csr_hstack_int64():
- """
- Tests if hstack properly promotes to indices and indptr arrays to np.int64
- when using np.int32 during concatenation would result in either array
- overflowing.
- """
- max_int32 = np.iinfo(np.int32).max
- # First case: indices would overflow with int32
- data = [1.0]
- row = [0]
- max_indices_1 = max_int32 - 1
- max_indices_2 = 3
- # Individual indices arrays are representable with int32
- col_1 = [max_indices_1 - 1]
- col_2 = [max_indices_2 - 1]
- X_1 = csr_matrix((data, (row, col_1)))
- X_2 = csr_matrix((data, (row, col_2)))
- assert max(max_indices_1 - 1, max_indices_2 - 1) < max_int32
- assert X_1.indices.dtype == X_1.indptr.dtype == np.int32
- assert X_2.indices.dtype == X_2.indptr.dtype == np.int32
- # ... but when concatenating their CSR matrices, the resulting indices
- # array can't be represented with int32 and must be promoted to int64.
- X_hs = hstack([X_1, X_2], format="csr")
- assert X_hs.indices.max() == max_indices_1 + max_indices_2 - 1
- assert max_indices_1 + max_indices_2 - 1 > max_int32
- assert X_hs.indices.dtype == X_hs.indptr.dtype == np.int64
- # Even if the matrices are empty, we must account for their size
- # contribution so that we may safely set the final elements.
- X_1_empty = csr_matrix(X_1.shape)
- X_2_empty = csr_matrix(X_2.shape)
- X_hs_empty = hstack([X_1_empty, X_2_empty], format="csr")
- assert X_hs_empty.shape == X_hs.shape
- assert X_hs_empty.indices.dtype == np.int64
- # Should be just small enough to stay in int32 after stack. Note that
- # we theoretically could support indices.max() == max_int32, but due to an
- # edge-case in the underlying sparsetools code
- # (namely the `coo_tocsr` routine),
- # we require that max(X_hs_32.shape) < max_int32 as well.
- # Hence we can only support max_int32 - 1.
- col_3 = [max_int32 - max_indices_1 - 1]
- X_3 = csr_matrix((data, (row, col_3)))
- X_hs_32 = hstack([X_1, X_3], format="csr")
- assert X_hs_32.indices.dtype == np.int32
- assert X_hs_32.indices.max() == max_int32 - 1
|