1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798 |
- import numpy as np
- from numpy.testing import assert_array_almost_equal, assert_
- from scipy.sparse import csr_matrix, csc_matrix, lil_matrix
- import pytest
- def test_csc_getrow():
- N = 10
- np.random.seed(0)
- X = np.random.random((N, N))
- X[X > 0.7] = 0
- Xcsc = csc_matrix(X)
- for i in range(N):
- arr_row = X[i:i + 1, :]
- csc_row = Xcsc.getrow(i)
- assert_array_almost_equal(arr_row, csc_row.toarray())
- assert_(type(csc_row) is csr_matrix)
- def test_csc_getcol():
- N = 10
- np.random.seed(0)
- X = np.random.random((N, N))
- X[X > 0.7] = 0
- Xcsc = csc_matrix(X)
- for i in range(N):
- arr_col = X[:, i:i + 1]
- csc_col = Xcsc.getcol(i)
- assert_array_almost_equal(arr_col, csc_col.toarray())
- assert_(type(csc_col) is csc_matrix)
- @pytest.mark.parametrize("matrix_input, axis, expected_shape",
- [(csc_matrix([[1, 0],
- [0, 0],
- [0, 2]]),
- 0, (0, 2)),
- (csc_matrix([[1, 0],
- [0, 0],
- [0, 2]]),
- 1, (3, 0)),
- (csc_matrix([[1, 0],
- [0, 0],
- [0, 2]]),
- 'both', (0, 0)),
- (csc_matrix([[0, 1, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0],
- [0, 0, 2, 3, 0, 1]]),
- 0, (0, 6))])
- def test_csc_empty_slices(matrix_input, axis, expected_shape):
- # see gh-11127 for related discussion
- slice_1 = matrix_input.A.shape[0] - 1
- slice_2 = slice_1
- slice_3 = slice_2 - 1
- if axis == 0:
- actual_shape_1 = matrix_input[slice_1:slice_2, :].A.shape
- actual_shape_2 = matrix_input[slice_1:slice_3, :].A.shape
- elif axis == 1:
- actual_shape_1 = matrix_input[:, slice_1:slice_2].A.shape
- actual_shape_2 = matrix_input[:, slice_1:slice_3].A.shape
- elif axis == 'both':
- actual_shape_1 = matrix_input[slice_1:slice_2, slice_1:slice_2].A.shape
- actual_shape_2 = matrix_input[slice_1:slice_3, slice_1:slice_3].A.shape
- assert actual_shape_1 == expected_shape
- assert actual_shape_1 == actual_shape_2
- @pytest.mark.parametrize('ax', (-2, -1, 0, 1, None))
- def test_argmax_overflow(ax):
- # See gh-13646: Windows integer overflow for large sparse matrices.
- dim = (100000, 100000)
- A = lil_matrix(dim)
- A[-2, -2] = 42
- A[-3, -3] = 0.1234
- A = csc_matrix(A)
- idx = A.argmax(axis=ax)
- if ax is None:
- # idx is a single flattened index
- # that we need to convert to a 2d index pair;
- # can't do this with np.unravel_index because
- # the dimensions are too large
- ii = idx % dim[0]
- jj = idx // dim[0]
- else:
- # idx is an array of size of A.shape[ax];
- # check the max index to make sure no overflows
- # we encountered
- assert np.count_nonzero(idx) == A.nnz
- ii, jj = np.max(idx), np.argmax(idx)
- assert A[ii, jj] == A[-2, -2]
|