123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339 |
- import pytest
- import numpy as np
- import numpy.testing as npt
- import scipy.sparse
- import scipy.sparse.linalg as spla
- sparray_types = ('bsr', 'coo', 'csc', 'csr', 'dia', 'dok', 'lil')
- sparray_classes = [
- getattr(scipy.sparse, f'{T}_array') for T in sparray_types
- ]
- A = np.array([
- [0, 1, 2, 0],
- [2, 0, 0, 3],
- [1, 4, 0, 0]
- ])
- B = np.array([
- [0, 1],
- [2, 0]
- ])
- X = np.array([
- [1, 0, 0, 1],
- [2, 1, 2, 0],
- [0, 2, 1, 0],
- [0, 0, 1, 2]
- ], dtype=float)
- sparrays = [sparray(A) for sparray in sparray_classes]
- square_sparrays = [sparray(B) for sparray in sparray_classes]
- eig_sparrays = [sparray(X) for sparray in sparray_classes]
- parametrize_sparrays = pytest.mark.parametrize(
- "A", sparrays, ids=sparray_types
- )
- parametrize_square_sparrays = pytest.mark.parametrize(
- "B", square_sparrays, ids=sparray_types
- )
- parametrize_eig_sparrays = pytest.mark.parametrize(
- "X", eig_sparrays, ids=sparray_types
- )
- @parametrize_sparrays
- def test_sum(A):
- assert not isinstance(A.sum(axis=0), np.matrix), \
- "Expected array, got matrix"
- assert A.sum(axis=0).shape == (4,)
- assert A.sum(axis=1).shape == (3,)
- @parametrize_sparrays
- def test_mean(A):
- assert not isinstance(A.mean(axis=1), np.matrix), \
- "Expected array, got matrix"
- @parametrize_sparrays
- def test_todense(A):
- assert not isinstance(A.todense(), np.matrix), \
- "Expected array, got matrix"
- @parametrize_sparrays
- def test_indexing(A):
- if A.__class__.__name__[:3] in ('dia', 'coo', 'bsr'):
- return
- with pytest.raises(NotImplementedError):
- A[1, :]
- with pytest.raises(NotImplementedError):
- A[:, 1]
- with pytest.raises(NotImplementedError):
- A[1, [1, 2]]
- with pytest.raises(NotImplementedError):
- A[[1, 2], 1]
- assert A[[0]]._is_array, "Expected sparse array, got sparse matrix"
- assert A[1, [[1, 2]]]._is_array, "Expected ndarray, got sparse array"
- assert A[[[1, 2]], 1]._is_array, "Expected ndarray, got sparse array"
- assert A[:, [1, 2]]._is_array, "Expected sparse array, got something else"
- @parametrize_sparrays
- def test_dense_addition(A):
- X = np.random.random(A.shape)
- assert not isinstance(A + X, np.matrix), "Expected array, got matrix"
- @parametrize_sparrays
- def test_sparse_addition(A):
- assert (A + A)._is_array, "Expected array, got matrix"
- @parametrize_sparrays
- def test_elementwise_mul(A):
- assert np.all((A * A).todense() == A.power(2).todense())
- @parametrize_sparrays
- def test_elementwise_rmul(A):
- with pytest.raises(TypeError):
- None * A
- with pytest.raises(ValueError):
- np.eye(3) * scipy.sparse.csr_array(np.arange(6).reshape(2, 3))
- assert np.all((2 * A) == (A.todense() * 2))
- assert np.all((A.todense() * A) == (A.todense() ** 2))
- @parametrize_sparrays
- def test_matmul(A):
- assert np.all((A @ A.T).todense() == A.dot(A.T).todense())
- @parametrize_square_sparrays
- def test_pow(B):
- assert (B**0)._is_array, "Expected array, got matrix"
- assert (B**2)._is_array, "Expected array, got matrix"
- @parametrize_sparrays
- def test_sparse_divide(A):
- assert isinstance(A / A, np.ndarray)
- @parametrize_sparrays
- def test_dense_divide(A):
- assert (A / 2)._is_array, "Expected array, got matrix"
- @parametrize_sparrays
- def test_no_A_attr(A):
- with pytest.warns(np.VisibleDeprecationWarning):
- A.A
- @parametrize_sparrays
- def test_no_H_attr(A):
- with pytest.warns(np.VisibleDeprecationWarning):
- A.H
- @parametrize_sparrays
- def test_getrow_getcol(A):
- assert A.getcol(0)._is_array
- assert A.getrow(0)._is_array
- @parametrize_sparrays
- def test_docstr(A):
- if A.__doc__ is None:
- return
- docstr = A.__doc__.lower()
- for phrase in ('matrix', 'matrices'):
- assert phrase not in docstr
- # -- linalg --
- @parametrize_sparrays
- def test_as_linearoperator(A):
- L = spla.aslinearoperator(A)
- npt.assert_allclose(L * [1, 2, 3, 4], A @ [1, 2, 3, 4])
- @parametrize_square_sparrays
- def test_inv(B):
- if B.__class__.__name__[:3] != 'csc':
- return
- C = spla.inv(B)
- assert C._is_array
- npt.assert_allclose(C.todense(), np.linalg.inv(B.todense()))
- @parametrize_square_sparrays
- def test_expm(B):
- if B.__class__.__name__[:3] != 'csc':
- return
- Bmat = scipy.sparse.csc_matrix(B)
- C = spla.expm(B)
- assert C._is_array
- npt.assert_allclose(
- C.todense(),
- spla.expm(Bmat).todense()
- )
- @parametrize_square_sparrays
- def test_expm_multiply(B):
- if B.__class__.__name__[:3] != 'csc':
- return
- npt.assert_allclose(
- spla.expm_multiply(B, np.array([1, 2])),
- spla.expm(B) @ [1, 2]
- )
- @parametrize_sparrays
- def test_norm(A):
- C = spla.norm(A)
- npt.assert_allclose(C, np.linalg.norm(A.todense()))
- @parametrize_square_sparrays
- def test_onenormest(B):
- C = spla.onenormest(B)
- npt.assert_allclose(C, np.linalg.norm(B.todense(), 1))
- @parametrize_square_sparrays
- def test_spsolve(B):
- if B.__class__.__name__[:3] not in ('csc', 'csr'):
- return
- npt.assert_allclose(
- spla.spsolve(B, [1, 2]),
- np.linalg.solve(B.todense(), [1, 2])
- )
- def test_spsolve_triangular():
- X = scipy.sparse.csr_array([
- [1, 0, 0, 0],
- [2, 1, 0, 0],
- [3, 2, 1, 0],
- [4, 3, 2, 1],
- ])
- spla.spsolve_triangular(X, [1, 2, 3, 4])
- @parametrize_square_sparrays
- def test_factorized(B):
- if B.__class__.__name__[:3] != 'csc':
- return
- LU = spla.factorized(B)
- npt.assert_allclose(
- LU(np.array([1, 2])),
- np.linalg.solve(B.todense(), [1, 2])
- )
- @parametrize_square_sparrays
- @pytest.mark.parametrize(
- "solver",
- ["bicg", "bicgstab", "cg", "cgs", "gmres", "lgmres", "minres", "qmr",
- "gcrotmk", "tfqmr"]
- )
- def test_solvers(B, solver):
- if solver == "minres":
- kwargs = {}
- else:
- kwargs = {'atol': 1e-5}
- x, info = getattr(spla, solver)(B, np.array([1, 2]), **kwargs)
- assert info >= 0 # no errors, even if perhaps did not converge fully
- npt.assert_allclose(x, [1, 1], atol=1e-1)
- @parametrize_sparrays
- @pytest.mark.parametrize(
- "solver",
- ["lsqr", "lsmr"]
- )
- def test_lstsqr(A, solver):
- x, *_ = getattr(spla, solver)(A, [1, 2, 3])
- npt.assert_allclose(A @ x, [1, 2, 3])
- @parametrize_eig_sparrays
- def test_eigs(X):
- e, v = spla.eigs(X, k=1)
- npt.assert_allclose(
- X @ v,
- e[0] * v
- )
- @parametrize_eig_sparrays
- def test_eigsh(X):
- X = X + X.T
- e, v = spla.eigsh(X, k=1)
- npt.assert_allclose(
- X @ v,
- e[0] * v
- )
- @parametrize_eig_sparrays
- def test_svds(X):
- u, s, vh = spla.svds(X, k=3)
- u2, s2, vh2 = np.linalg.svd(X.todense())
- s = np.sort(s)
- s2 = np.sort(s2[:3])
- npt.assert_allclose(s, s2, atol=1e-3)
- def test_splu():
- X = scipy.sparse.csc_array([
- [1, 0, 0, 0],
- [2, 1, 0, 0],
- [3, 2, 1, 0],
- [4, 3, 2, 1],
- ])
- LU = spla.splu(X)
- npt.assert_allclose(LU.solve(np.array([1, 2, 3, 4])), [1, 0, 0, 0])
- def test_spilu():
- X = scipy.sparse.csc_array([
- [1, 0, 0, 0],
- [2, 1, 0, 0],
- [3, 2, 1, 0],
- [4, 3, 2, 1],
- ])
- LU = spla.spilu(X)
- npt.assert_allclose(LU.solve(np.array([1, 2, 3, 4])), [1, 0, 0, 0])
- @parametrize_sparrays
- def test_power_operator(A):
- # https://github.com/scipy/scipy/issues/15948
- npt.assert_equal((A**2).todense(), (A.todense())**2)
|