123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187 |
- import os
- import pytest
- import sys
- import numpy as np
- from numpy.testing import assert_allclose
- from pytest import raises as assert_raises
- from scipy.sparse.linalg._svdp import _svdp
- from scipy.sparse import csr_matrix, csc_matrix
- # dtype_flavour to tolerance
- TOLS = {
- np.float32: 1e-4,
- np.float64: 1e-8,
- np.complex64: 1e-4,
- np.complex128: 1e-8,
- }
- def is_complex_type(dtype):
- return np.dtype(dtype).kind == "c"
- def is_32bit():
- return sys.maxsize <= 2**32 # (usually 2**31-1 on 32-bit)
- def is_windows():
- return 'win32' in sys.platform
- _dtypes = []
- for dtype_flavour in TOLS.keys():
- marks = []
- if is_complex_type(dtype_flavour):
- if is_32bit():
- # PROPACK has issues w/ complex on 32-bit; see gh-14433
- marks = [pytest.mark.skip]
- elif is_windows() and np.dtype(dtype_flavour).itemsize == 16:
- # windows crashes for complex128 (so don't xfail); see gh-15108
- marks = [pytest.mark.skip]
- else:
- marks = [pytest.mark.slow] # type: ignore[list-item]
- _dtypes.append(pytest.param(dtype_flavour, marks=marks,
- id=dtype_flavour.__name__))
- _dtypes = tuple(_dtypes) # type: ignore[assignment]
- def generate_matrix(constructor, n, m, f,
- dtype=float, rseed=0, **kwargs):
- """Generate a random sparse matrix"""
- rng = np.random.RandomState(rseed)
- if is_complex_type(dtype):
- M = (- 5 + 10 * rng.rand(n, m)
- - 5j + 10j * rng.rand(n, m)).astype(dtype)
- else:
- M = (-5 + 10 * rng.rand(n, m)).astype(dtype)
- M[M.real > 10 * f - 5] = 0
- return constructor(M, **kwargs)
- def assert_orthogonal(u1, u2, rtol, atol):
- """Check that the first k rows of u1 and u2 are orthogonal"""
- A = abs(np.dot(u1.conj().T, u2))
- assert_allclose(A, np.eye(u1.shape[1], u2.shape[1]), rtol=rtol, atol=atol)
- def check_svdp(n, m, constructor, dtype, k, irl_mode, which, f=0.8):
- tol = TOLS[dtype]
- M = generate_matrix(np.asarray, n, m, f, dtype)
- Msp = constructor(M)
- u1, sigma1, vt1 = np.linalg.svd(M, full_matrices=False)
- u2, sigma2, vt2, _ = _svdp(Msp, k=k, which=which, irl_mode=irl_mode,
- tol=tol)
- # check the which
- if which.upper() == 'SM':
- u1 = np.roll(u1, k, 1)
- vt1 = np.roll(vt1, k, 0)
- sigma1 = np.roll(sigma1, k)
- # check that singular values agree
- assert_allclose(sigma1[:k], sigma2, rtol=tol, atol=tol)
- # check that singular vectors are orthogonal
- assert_orthogonal(u1, u2, rtol=tol, atol=tol)
- assert_orthogonal(vt1.T, vt2.T, rtol=tol, atol=tol)
- @pytest.mark.parametrize('ctor', (np.array, csr_matrix, csc_matrix))
- @pytest.mark.parametrize('dtype', _dtypes)
- @pytest.mark.parametrize('irl', (True, False))
- @pytest.mark.parametrize('which', ('LM', 'SM'))
- def test_svdp(ctor, dtype, irl, which):
- np.random.seed(0)
- n, m, k = 10, 20, 3
- if which == 'SM' and not irl:
- message = "`which`='SM' requires irl_mode=True"
- with assert_raises(ValueError, match=message):
- check_svdp(n, m, ctor, dtype, k, irl, which)
- else:
- if is_32bit() and is_complex_type(dtype):
- message = 'PROPACK complex-valued SVD methods not available '
- with assert_raises(TypeError, match=message):
- check_svdp(n, m, ctor, dtype, k, irl, which)
- else:
- check_svdp(n, m, ctor, dtype, k, irl, which)
- @pytest.mark.parametrize('dtype', _dtypes)
- @pytest.mark.parametrize('irl', (False, True))
- @pytest.mark.timeout(120) # True, complex64 > 60 s: prerel deps cov 64bit blas
- def test_examples(dtype, irl):
- # Note: atol for complex64 bumped from 1e-4 to 1e-3 due to test failures
- # with BLIS, Netlib, and MKL+AVX512 - see
- # https://github.com/conda-forge/scipy-feedstock/pull/198#issuecomment-999180432
- atol = {
- np.float32: 1.3e-4,
- np.float64: 1e-9,
- np.complex64: 1e-3,
- np.complex128: 1e-9,
- }[dtype]
- path_prefix = os.path.dirname(__file__)
- # Test matrices from `illc1850.coord` and `mhd1280b.cua` distributed with
- # PROPACK 2.1: http://sun.stanford.edu/~rmunk/PROPACK/
- relative_path = "propack_test_data.npz"
- filename = os.path.join(path_prefix, relative_path)
- data = np.load(filename, allow_pickle=True)
- if is_complex_type(dtype):
- A = data['A_complex'].item().astype(dtype)
- else:
- A = data['A_real'].item().astype(dtype)
- k = 200
- u, s, vh, _ = _svdp(A, k, irl_mode=irl, random_state=0)
- # complex example matrix has many repeated singular values, so check only
- # beginning non-repeated singular vectors to avoid permutations
- sv_check = 27 if is_complex_type(dtype) else k
- u = u[:, :sv_check]
- vh = vh[:sv_check, :]
- s = s[:sv_check]
- # Check orthogonality of singular vectors
- assert_allclose(np.eye(u.shape[1]), u.conj().T @ u, atol=atol)
- assert_allclose(np.eye(vh.shape[0]), vh @ vh.conj().T, atol=atol)
- # Ensure the norm of the difference between the np.linalg.svd and
- # PROPACK reconstructed matrices is small
- u3, s3, vh3 = np.linalg.svd(A.todense())
- u3 = u3[:, :sv_check]
- s3 = s3[:sv_check]
- vh3 = vh3[:sv_check, :]
- A3 = u3 @ np.diag(s3) @ vh3
- recon = u @ np.diag(s) @ vh
- assert_allclose(np.linalg.norm(A3 - recon), 0, atol=atol)
- @pytest.mark.parametrize('shifts', (None, -10, 0, 1, 10, 70))
- @pytest.mark.parametrize('dtype', _dtypes[:2])
- def test_shifts(shifts, dtype):
- np.random.seed(0)
- n, k = 70, 10
- A = np.random.random((n, n))
- if shifts is not None and ((shifts < 0) or (k > min(n-1-shifts, n))):
- with pytest.raises(ValueError):
- _svdp(A, k, shifts=shifts, kmax=5*k, irl_mode=True)
- else:
- _svdp(A, k, shifts=shifts, kmax=5*k, irl_mode=True)
- @pytest.mark.slow
- @pytest.mark.xfail()
- def test_shifts_accuracy():
- np.random.seed(0)
- n, k = 70, 10
- A = np.random.random((n, n)).astype(np.double)
- u1, s1, vt1, _ = _svdp(A, k, shifts=None, which='SM', irl_mode=True)
- u2, s2, vt2, _ = _svdp(A, k, shifts=32, which='SM', irl_mode=True)
- # shifts <= 32 doesn't agree with shifts > 32
- # Does agree when which='LM' instead of 'SM'
- assert_allclose(s1, s2)
|