123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581 |
- #
- # Created by: Pearu Peterson, March 2002
- #
- """ Test functions for scipy.linalg._matfuncs module
- """
- import math
- import numpy as np
- from numpy import array, eye, exp, random
- from numpy.linalg import matrix_power
- from numpy.testing import (
- assert_allclose, assert_, assert_array_almost_equal, assert_equal,
- assert_array_almost_equal_nulp, suppress_warnings)
- from scipy.sparse import csc_matrix, SparseEfficiencyWarning
- from scipy.sparse._construct import eye as speye
- from scipy.sparse.linalg._matfuncs import (expm, _expm,
- ProductOperator, MatrixPowerOperator,
- _onenorm_matrix_power_nnm)
- from scipy.sparse._sputils import matrix
- from scipy.linalg import logm
- from scipy.special import factorial, binom
- import scipy.sparse
- import scipy.sparse.linalg
- def _burkardt_13_power(n, p):
- """
- A helper function for testing matrix functions.
- Parameters
- ----------
- n : integer greater than 1
- Order of the square matrix to be returned.
- p : non-negative integer
- Power of the matrix.
- Returns
- -------
- out : ndarray representing a square matrix
- A Forsythe matrix of order n, raised to the power p.
- """
- # Input validation.
- if n != int(n) or n < 2:
- raise ValueError('n must be an integer greater than 1')
- n = int(n)
- if p != int(p) or p < 0:
- raise ValueError('p must be a non-negative integer')
- p = int(p)
- # Construct the matrix explicitly.
- a, b = divmod(p, n)
- large = np.power(10.0, -n*a)
- small = large * np.power(10.0, -n)
- return np.diag([large]*(n-b), b) + np.diag([small]*b, b-n)
- def test_onenorm_matrix_power_nnm():
- np.random.seed(1234)
- for n in range(1, 5):
- for p in range(5):
- M = np.random.random((n, n))
- Mp = np.linalg.matrix_power(M, p)
- observed = _onenorm_matrix_power_nnm(M, p)
- expected = np.linalg.norm(Mp, 1)
- assert_allclose(observed, expected)
- class TestExpM:
- def test_zero_ndarray(self):
- a = array([[0.,0],[0,0]])
- assert_array_almost_equal(expm(a),[[1,0],[0,1]])
- def test_zero_sparse(self):
- a = csc_matrix([[0.,0],[0,0]])
- assert_array_almost_equal(expm(a).toarray(),[[1,0],[0,1]])
- def test_zero_matrix(self):
- a = matrix([[0.,0],[0,0]])
- assert_array_almost_equal(expm(a),[[1,0],[0,1]])
- def test_misc_types(self):
- A = expm(np.array([[1]]))
- assert_allclose(expm(((1,),)), A)
- assert_allclose(expm([[1]]), A)
- assert_allclose(expm(matrix([[1]])), A)
- assert_allclose(expm(np.array([[1]])), A)
- assert_allclose(expm(csc_matrix([[1]])).A, A)
- B = expm(np.array([[1j]]))
- assert_allclose(expm(((1j,),)), B)
- assert_allclose(expm([[1j]]), B)
- assert_allclose(expm(matrix([[1j]])), B)
- assert_allclose(expm(csc_matrix([[1j]])).A, B)
- def test_bidiagonal_sparse(self):
- A = csc_matrix([
- [1, 3, 0],
- [0, 1, 5],
- [0, 0, 2]], dtype=float)
- e1 = math.exp(1)
- e2 = math.exp(2)
- expected = np.array([
- [e1, 3*e1, 15*(e2 - 2*e1)],
- [0, e1, 5*(e2 - e1)],
- [0, 0, e2]], dtype=float)
- observed = expm(A).toarray()
- assert_array_almost_equal(observed, expected)
- def test_padecases_dtype_float(self):
- for dtype in [np.float32, np.float64]:
- for scale in [1e-2, 1e-1, 5e-1, 1, 10]:
- A = scale * eye(3, dtype=dtype)
- observed = expm(A)
- expected = exp(scale, dtype=dtype) * eye(3, dtype=dtype)
- assert_array_almost_equal_nulp(observed, expected, nulp=100)
- def test_padecases_dtype_complex(self):
- for dtype in [np.complex64, np.complex128]:
- for scale in [1e-2, 1e-1, 5e-1, 1, 10]:
- A = scale * eye(3, dtype=dtype)
- observed = expm(A)
- expected = exp(scale, dtype=dtype) * eye(3, dtype=dtype)
- assert_array_almost_equal_nulp(observed, expected, nulp=100)
- def test_padecases_dtype_sparse_float(self):
- # float32 and complex64 lead to errors in spsolve/UMFpack
- dtype = np.float64
- for scale in [1e-2, 1e-1, 5e-1, 1, 10]:
- a = scale * speye(3, 3, dtype=dtype, format='csc')
- e = exp(scale, dtype=dtype) * eye(3, dtype=dtype)
- with suppress_warnings() as sup:
- sup.filter(SparseEfficiencyWarning,
- "Changing the sparsity structure of a csc_matrix is expensive.")
- exact_onenorm = _expm(a, use_exact_onenorm=True).toarray()
- inexact_onenorm = _expm(a, use_exact_onenorm=False).toarray()
- assert_array_almost_equal_nulp(exact_onenorm, e, nulp=100)
- assert_array_almost_equal_nulp(inexact_onenorm, e, nulp=100)
- def test_padecases_dtype_sparse_complex(self):
- # float32 and complex64 lead to errors in spsolve/UMFpack
- dtype = np.complex128
- for scale in [1e-2, 1e-1, 5e-1, 1, 10]:
- a = scale * speye(3, 3, dtype=dtype, format='csc')
- e = exp(scale) * eye(3, dtype=dtype)
- with suppress_warnings() as sup:
- sup.filter(SparseEfficiencyWarning,
- "Changing the sparsity structure of a csc_matrix is expensive.")
- assert_array_almost_equal_nulp(expm(a).toarray(), e, nulp=100)
- def test_logm_consistency(self):
- random.seed(1234)
- for dtype in [np.float64, np.complex128]:
- for n in range(1, 10):
- for scale in [1e-4, 1e-3, 1e-2, 1e-1, 1, 1e1, 1e2]:
- # make logm(A) be of a given scale
- A = (eye(n) + random.rand(n, n) * scale).astype(dtype)
- if np.iscomplexobj(A):
- A = A + 1j * random.rand(n, n) * scale
- assert_array_almost_equal(expm(logm(A)), A)
- def test_integer_matrix(self):
- Q = np.array([
- [-3, 1, 1, 1],
- [1, -3, 1, 1],
- [1, 1, -3, 1],
- [1, 1, 1, -3]])
- assert_allclose(expm(Q), expm(1.0 * Q))
- def test_integer_matrix_2(self):
- # Check for integer overflows
- Q = np.array([[-500, 500, 0, 0],
- [0, -550, 360, 190],
- [0, 630, -630, 0],
- [0, 0, 0, 0]], dtype=np.int16)
- assert_allclose(expm(Q), expm(1.0 * Q))
- Q = csc_matrix(Q)
- assert_allclose(expm(Q).A, expm(1.0 * Q).A)
- def test_triangularity_perturbation(self):
- # Experiment (1) of
- # Awad H. Al-Mohy and Nicholas J. Higham (2012)
- # Improved Inverse Scaling and Squaring Algorithms
- # for the Matrix Logarithm.
- A = np.array([
- [3.2346e-1, 3e4, 3e4, 3e4],
- [0, 3.0089e-1, 3e4, 3e4],
- [0, 0, 3.221e-1, 3e4],
- [0, 0, 0, 3.0744e-1]],
- dtype=float)
- A_logm = np.array([
- [-1.12867982029050462e+00, 9.61418377142025565e+04,
- -4.52485573953179264e+09, 2.92496941103871812e+14],
- [0.00000000000000000e+00, -1.20101052953082288e+00,
- 9.63469687211303099e+04, -4.68104828911105442e+09],
- [0.00000000000000000e+00, 0.00000000000000000e+00,
- -1.13289322264498393e+00, 9.53249183094775653e+04],
- [0.00000000000000000e+00, 0.00000000000000000e+00,
- 0.00000000000000000e+00, -1.17947533272554850e+00]],
- dtype=float)
- assert_allclose(expm(A_logm), A, rtol=1e-4)
- # Perturb the upper triangular matrix by tiny amounts,
- # so that it becomes technically not upper triangular.
- random.seed(1234)
- tiny = 1e-17
- A_logm_perturbed = A_logm.copy()
- A_logm_perturbed[1, 0] = tiny
- with suppress_warnings() as sup:
- sup.filter(RuntimeWarning, "Ill-conditioned.*")
- A_expm_logm_perturbed = expm(A_logm_perturbed)
- rtol = 1e-4
- atol = 100 * tiny
- assert_(not np.allclose(A_expm_logm_perturbed, A, rtol=rtol, atol=atol))
- def test_burkardt_1(self):
- # This matrix is diagonal.
- # The calculation of the matrix exponential is simple.
- #
- # This is the first of a series of matrix exponential tests
- # collected by John Burkardt from the following sources.
- #
- # Alan Laub,
- # Review of "Linear System Theory" by Joao Hespanha,
- # SIAM Review,
- # Volume 52, Number 4, December 2010, pages 779--781.
- #
- # Cleve Moler and Charles Van Loan,
- # Nineteen Dubious Ways to Compute the Exponential of a Matrix,
- # Twenty-Five Years Later,
- # SIAM Review,
- # Volume 45, Number 1, March 2003, pages 3--49.
- #
- # Cleve Moler,
- # Cleve's Corner: A Balancing Act for the Matrix Exponential,
- # 23 July 2012.
- #
- # Robert Ward,
- # Numerical computation of the matrix exponential
- # with accuracy estimate,
- # SIAM Journal on Numerical Analysis,
- # Volume 14, Number 4, September 1977, pages 600--610.
- exp1 = np.exp(1)
- exp2 = np.exp(2)
- A = np.array([
- [1, 0],
- [0, 2],
- ], dtype=float)
- desired = np.array([
- [exp1, 0],
- [0, exp2],
- ], dtype=float)
- actual = expm(A)
- assert_allclose(actual, desired)
- def test_burkardt_2(self):
- # This matrix is symmetric.
- # The calculation of the matrix exponential is straightforward.
- A = np.array([
- [1, 3],
- [3, 2],
- ], dtype=float)
- desired = np.array([
- [39.322809708033859, 46.166301438885753],
- [46.166301438885768, 54.711576854329110],
- ], dtype=float)
- actual = expm(A)
- assert_allclose(actual, desired)
- def test_burkardt_3(self):
- # This example is due to Laub.
- # This matrix is ill-suited for the Taylor series approach.
- # As powers of A are computed, the entries blow up too quickly.
- exp1 = np.exp(1)
- exp39 = np.exp(39)
- A = np.array([
- [0, 1],
- [-39, -40],
- ], dtype=float)
- desired = np.array([
- [
- 39/(38*exp1) - 1/(38*exp39),
- -np.expm1(-38) / (38*exp1)],
- [
- 39*np.expm1(-38) / (38*exp1),
- -1/(38*exp1) + 39/(38*exp39)],
- ], dtype=float)
- actual = expm(A)
- assert_allclose(actual, desired)
- def test_burkardt_4(self):
- # This example is due to Moler and Van Loan.
- # The example will cause problems for the series summation approach,
- # as well as for diagonal Pade approximations.
- A = np.array([
- [-49, 24],
- [-64, 31],
- ], dtype=float)
- U = np.array([[3, 1], [4, 2]], dtype=float)
- V = np.array([[1, -1/2], [-2, 3/2]], dtype=float)
- w = np.array([-17, -1], dtype=float)
- desired = np.dot(U * np.exp(w), V)
- actual = expm(A)
- assert_allclose(actual, desired)
- def test_burkardt_5(self):
- # This example is due to Moler and Van Loan.
- # This matrix is strictly upper triangular
- # All powers of A are zero beyond some (low) limit.
- # This example will cause problems for Pade approximations.
- A = np.array([
- [0, 6, 0, 0],
- [0, 0, 6, 0],
- [0, 0, 0, 6],
- [0, 0, 0, 0],
- ], dtype=float)
- desired = np.array([
- [1, 6, 18, 36],
- [0, 1, 6, 18],
- [0, 0, 1, 6],
- [0, 0, 0, 1],
- ], dtype=float)
- actual = expm(A)
- assert_allclose(actual, desired)
- def test_burkardt_6(self):
- # This example is due to Moler and Van Loan.
- # This matrix does not have a complete set of eigenvectors.
- # That means the eigenvector approach will fail.
- exp1 = np.exp(1)
- A = np.array([
- [1, 1],
- [0, 1],
- ], dtype=float)
- desired = np.array([
- [exp1, exp1],
- [0, exp1],
- ], dtype=float)
- actual = expm(A)
- assert_allclose(actual, desired)
- def test_burkardt_7(self):
- # This example is due to Moler and Van Loan.
- # This matrix is very close to example 5.
- # Mathematically, it has a complete set of eigenvectors.
- # Numerically, however, the calculation will be suspect.
- exp1 = np.exp(1)
- eps = np.spacing(1)
- A = np.array([
- [1 + eps, 1],
- [0, 1 - eps],
- ], dtype=float)
- desired = np.array([
- [exp1, exp1],
- [0, exp1],
- ], dtype=float)
- actual = expm(A)
- assert_allclose(actual, desired)
- def test_burkardt_8(self):
- # This matrix was an example in Wikipedia.
- exp4 = np.exp(4)
- exp16 = np.exp(16)
- A = np.array([
- [21, 17, 6],
- [-5, -1, -6],
- [4, 4, 16],
- ], dtype=float)
- desired = np.array([
- [13*exp16 - exp4, 13*exp16 - 5*exp4, 2*exp16 - 2*exp4],
- [-9*exp16 + exp4, -9*exp16 + 5*exp4, -2*exp16 + 2*exp4],
- [16*exp16, 16*exp16, 4*exp16],
- ], dtype=float) * 0.25
- actual = expm(A)
- assert_allclose(actual, desired)
- def test_burkardt_9(self):
- # This matrix is due to the NAG Library.
- # It is an example for function F01ECF.
- A = np.array([
- [1, 2, 2, 2],
- [3, 1, 1, 2],
- [3, 2, 1, 2],
- [3, 3, 3, 1],
- ], dtype=float)
- desired = np.array([
- [740.7038, 610.8500, 542.2743, 549.1753],
- [731.2510, 603.5524, 535.0884, 542.2743],
- [823.7630, 679.4257, 603.5524, 610.8500],
- [998.4355, 823.7630, 731.2510, 740.7038],
- ], dtype=float)
- actual = expm(A)
- assert_allclose(actual, desired)
- def test_burkardt_10(self):
- # This is Ward's example #1.
- # It is defective and nonderogatory.
- A = np.array([
- [4, 2, 0],
- [1, 4, 1],
- [1, 1, 4],
- ], dtype=float)
- assert_allclose(sorted(scipy.linalg.eigvals(A)), (3, 3, 6))
- desired = np.array([
- [147.8666224463699, 183.7651386463682, 71.79703239999647],
- [127.7810855231823, 183.7651386463682, 91.88256932318415],
- [127.7810855231824, 163.6796017231806, 111.9681062463718],
- ], dtype=float)
- actual = expm(A)
- assert_allclose(actual, desired)
- def test_burkardt_11(self):
- # This is Ward's example #2.
- # It is a symmetric matrix.
- A = np.array([
- [29.87942128909879, 0.7815750847907159, -2.289519314033932],
- [0.7815750847907159, 25.72656945571064, 8.680737820540137],
- [-2.289519314033932, 8.680737820540137, 34.39400925519054],
- ], dtype=float)
- assert_allclose(scipy.linalg.eigvalsh(A), (20, 30, 40))
- desired = np.array([
- [
- 5.496313853692378E+15,
- -1.823188097200898E+16,
- -3.047577080858001E+16],
- [
- -1.823188097200899E+16,
- 6.060522870222108E+16,
- 1.012918429302482E+17],
- [
- -3.047577080858001E+16,
- 1.012918429302482E+17,
- 1.692944112408493E+17],
- ], dtype=float)
- actual = expm(A)
- assert_allclose(actual, desired)
- def test_burkardt_12(self):
- # This is Ward's example #3.
- # Ward's algorithm has difficulty estimating the accuracy
- # of its results.
- A = np.array([
- [-131, 19, 18],
- [-390, 56, 54],
- [-387, 57, 52],
- ], dtype=float)
- assert_allclose(sorted(scipy.linalg.eigvals(A)), (-20, -2, -1))
- desired = np.array([
- [-1.509644158793135, 0.3678794391096522, 0.1353352811751005],
- [-5.632570799891469, 1.471517758499875, 0.4060058435250609],
- [-4.934938326088363, 1.103638317328798, 0.5413411267617766],
- ], dtype=float)
- actual = expm(A)
- assert_allclose(actual, desired)
- def test_burkardt_13(self):
- # This is Ward's example #4.
- # This is a version of the Forsythe matrix.
- # The eigenvector problem is badly conditioned.
- # Ward's algorithm has difficulty esimating the accuracy
- # of its results for this problem.
- #
- # Check the construction of one instance of this family of matrices.
- A4_actual = _burkardt_13_power(4, 1)
- A4_desired = [[0, 1, 0, 0],
- [0, 0, 1, 0],
- [0, 0, 0, 1],
- [1e-4, 0, 0, 0]]
- assert_allclose(A4_actual, A4_desired)
- # Check the expm for a few instances.
- for n in (2, 3, 4, 10):
- # Approximate expm using Taylor series.
- # This works well for this matrix family
- # because each matrix in the summation,
- # even before dividing by the factorial,
- # is entrywise positive with max entry 10**(-floor(p/n)*n).
- k = max(1, int(np.ceil(16/n)))
- desired = np.zeros((n, n), dtype=float)
- for p in range(n*k):
- Ap = _burkardt_13_power(n, p)
- assert_equal(np.min(Ap), 0)
- assert_allclose(np.max(Ap), np.power(10, -np.floor(p/n)*n))
- desired += Ap / factorial(p)
- actual = expm(_burkardt_13_power(n, 1))
- assert_allclose(actual, desired)
- def test_burkardt_14(self):
- # This is Moler's example.
- # This badly scaled matrix caused problems for MATLAB's expm().
- A = np.array([
- [0, 1e-8, 0],
- [-(2e10 + 4e8/6.), -3, 2e10],
- [200./3., 0, -200./3.],
- ], dtype=float)
- desired = np.array([
- [0.446849468283175, 1.54044157383952e-09, 0.462811453558774],
- [-5743067.77947947, -0.0152830038686819, -4526542.71278401],
- [0.447722977849494, 1.54270484519591e-09, 0.463480648837651],
- ], dtype=float)
- actual = expm(A)
- assert_allclose(actual, desired)
- def test_pascal(self):
- # Test pascal triangle.
- # Nilpotent exponential, used to trigger a failure (gh-8029)
- for scale in [1.0, 1e-3, 1e-6]:
- for n in range(0, 80, 3):
- sc = scale ** np.arange(n, -1, -1)
- if np.any(sc < 1e-300):
- break
- A = np.diag(np.arange(1, n + 1), -1) * scale
- B = expm(A)
- got = B
- expected = binom(np.arange(n + 1)[:,None],
- np.arange(n + 1)[None,:]) * sc[None,:] / sc[:,None]
- atol = 1e-13 * abs(expected).max()
- assert_allclose(got, expected, atol=atol)
- def test_matrix_input(self):
- # Large np.matrix inputs should work, gh-5546
- A = np.zeros((200, 200))
- A[-1,0] = 1
- B0 = expm(A)
- with suppress_warnings() as sup:
- sup.filter(DeprecationWarning, "the matrix subclass.*")
- sup.filter(PendingDeprecationWarning, "the matrix subclass.*")
- B = expm(np.matrix(A))
- assert_allclose(B, B0)
- def test_exp_sinch_overflow(self):
- # Check overflow in intermediate steps is fixed (gh-11839)
- L = np.array([[1.0, -0.5, -0.5, 0.0, 0.0, 0.0, 0.0],
- [0.0, 1.0, 0.0, -0.5, -0.5, 0.0, 0.0],
- [0.0, 0.0, 1.0, 0.0, 0.0, -0.5, -0.5],
- [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
- [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
- [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
- [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]])
- E0 = expm(-L)
- E1 = expm(-2**11 * L)
- E2 = E0
- for j in range(11):
- E2 = E2 @ E2
- assert_allclose(E1, E2)
- class TestOperators:
- def test_product_operator(self):
- random.seed(1234)
- n = 5
- k = 2
- nsamples = 10
- for i in range(nsamples):
- A = np.random.randn(n, n)
- B = np.random.randn(n, n)
- C = np.random.randn(n, n)
- D = np.random.randn(n, k)
- op = ProductOperator(A, B, C)
- assert_allclose(op.matmat(D), A.dot(B).dot(C).dot(D))
- assert_allclose(op.T.matmat(D), (A.dot(B).dot(C)).T.dot(D))
- def test_matrix_power_operator(self):
- random.seed(1234)
- n = 5
- k = 2
- p = 3
- nsamples = 10
- for i in range(nsamples):
- A = np.random.randn(n, n)
- B = np.random.randn(n, k)
- op = MatrixPowerOperator(A, p)
- assert_allclose(op.matmat(B), matrix_power(A, p).dot(B))
- assert_allclose(op.T.matmat(B), matrix_power(A, p).T.dot(B))
|