123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395 |
- from io import StringIO
- import warnings
- import numpy as np
- from numpy.testing import assert_array_almost_equal, assert_array_equal, assert_allclose
- from pytest import raises as assert_raises
- from scipy.sparse.csgraph import (shortest_path, dijkstra, johnson,
- bellman_ford, construct_dist_matrix,
- NegativeCycleError)
- import scipy.sparse
- from scipy.io import mmread
- import pytest
- directed_G = np.array([[0, 3, 3, 0, 0],
- [0, 0, 0, 2, 4],
- [0, 0, 0, 0, 0],
- [1, 0, 0, 0, 0],
- [2, 0, 0, 2, 0]], dtype=float)
- undirected_G = np.array([[0, 3, 3, 1, 2],
- [3, 0, 0, 2, 4],
- [3, 0, 0, 0, 0],
- [1, 2, 0, 0, 2],
- [2, 4, 0, 2, 0]], dtype=float)
- unweighted_G = (directed_G > 0).astype(float)
- directed_SP = [[0, 3, 3, 5, 7],
- [3, 0, 6, 2, 4],
- [np.inf, np.inf, 0, np.inf, np.inf],
- [1, 4, 4, 0, 8],
- [2, 5, 5, 2, 0]]
- directed_sparse_zero_G = scipy.sparse.csr_matrix(([0, 1, 2, 3, 1],
- ([0, 1, 2, 3, 4],
- [1, 2, 0, 4, 3])),
- shape = (5, 5))
- directed_sparse_zero_SP = [[0, 0, 1, np.inf, np.inf],
- [3, 0, 1, np.inf, np.inf],
- [2, 2, 0, np.inf, np.inf],
- [np.inf, np.inf, np.inf, 0, 3],
- [np.inf, np.inf, np.inf, 1, 0]]
- undirected_sparse_zero_G = scipy.sparse.csr_matrix(([0, 0, 1, 1, 2, 2, 1, 1],
- ([0, 1, 1, 2, 2, 0, 3, 4],
- [1, 0, 2, 1, 0, 2, 4, 3])),
- shape = (5, 5))
- undirected_sparse_zero_SP = [[0, 0, 1, np.inf, np.inf],
- [0, 0, 1, np.inf, np.inf],
- [1, 1, 0, np.inf, np.inf],
- [np.inf, np.inf, np.inf, 0, 1],
- [np.inf, np.inf, np.inf, 1, 0]]
- directed_pred = np.array([[-9999, 0, 0, 1, 1],
- [3, -9999, 0, 1, 1],
- [-9999, -9999, -9999, -9999, -9999],
- [3, 0, 0, -9999, 1],
- [4, 0, 0, 4, -9999]], dtype=float)
- undirected_SP = np.array([[0, 3, 3, 1, 2],
- [3, 0, 6, 2, 4],
- [3, 6, 0, 4, 5],
- [1, 2, 4, 0, 2],
- [2, 4, 5, 2, 0]], dtype=float)
- undirected_SP_limit_2 = np.array([[0, np.inf, np.inf, 1, 2],
- [np.inf, 0, np.inf, 2, np.inf],
- [np.inf, np.inf, 0, np.inf, np.inf],
- [1, 2, np.inf, 0, 2],
- [2, np.inf, np.inf, 2, 0]], dtype=float)
- undirected_SP_limit_0 = np.ones((5, 5), dtype=float) - np.eye(5)
- undirected_SP_limit_0[undirected_SP_limit_0 > 0] = np.inf
- undirected_pred = np.array([[-9999, 0, 0, 0, 0],
- [1, -9999, 0, 1, 1],
- [2, 0, -9999, 0, 0],
- [3, 3, 0, -9999, 3],
- [4, 4, 0, 4, -9999]], dtype=float)
- directed_negative_weighted_G = np.array([[0, 0, 0],
- [-1, 0, 0],
- [0, -1, 0]], dtype=float)
- directed_negative_weighted_SP = np.array([[0, np.inf, np.inf],
- [-1, 0, np.inf],
- [-2, -1, 0]], dtype=float)
- methods = ['auto', 'FW', 'D', 'BF', 'J']
- def test_dijkstra_limit():
- limits = [0, 2, np.inf]
- results = [undirected_SP_limit_0,
- undirected_SP_limit_2,
- undirected_SP]
- def check(limit, result):
- SP = dijkstra(undirected_G, directed=False, limit=limit)
- assert_array_almost_equal(SP, result)
- for limit, result in zip(limits, results):
- check(limit, result)
- def test_directed():
- def check(method):
- SP = shortest_path(directed_G, method=method, directed=True,
- overwrite=False)
- assert_array_almost_equal(SP, directed_SP)
- for method in methods:
- check(method)
- def test_undirected():
- def check(method, directed_in):
- if directed_in:
- SP1 = shortest_path(directed_G, method=method, directed=False,
- overwrite=False)
- assert_array_almost_equal(SP1, undirected_SP)
- else:
- SP2 = shortest_path(undirected_G, method=method, directed=True,
- overwrite=False)
- assert_array_almost_equal(SP2, undirected_SP)
- for method in methods:
- for directed_in in (True, False):
- check(method, directed_in)
- def test_directed_sparse_zero():
-
- def check(method):
- SP = shortest_path(directed_sparse_zero_G, method=method, directed=True,
- overwrite=False)
- assert_array_almost_equal(SP, directed_sparse_zero_SP)
- for method in methods:
- check(method)
- def test_undirected_sparse_zero():
- def check(method, directed_in):
- if directed_in:
- SP1 = shortest_path(directed_sparse_zero_G, method=method, directed=False,
- overwrite=False)
- assert_array_almost_equal(SP1, undirected_sparse_zero_SP)
- else:
- SP2 = shortest_path(undirected_sparse_zero_G, method=method, directed=True,
- overwrite=False)
- assert_array_almost_equal(SP2, undirected_sparse_zero_SP)
- for method in methods:
- for directed_in in (True, False):
- check(method, directed_in)
- @pytest.mark.parametrize('directed, SP_ans',
- ((True, directed_SP),
- (False, undirected_SP)))
- @pytest.mark.parametrize('indices', ([0, 2, 4], [0, 4], [3, 4], [0, 0]))
- def test_dijkstra_indices_min_only(directed, SP_ans, indices):
- SP_ans = np.array(SP_ans)
- indices = np.array(indices, dtype=np.int64)
- min_ind_ans = indices[np.argmin(SP_ans[indices, :], axis=0)]
- min_d_ans = np.zeros(SP_ans.shape[0], SP_ans.dtype)
- for k in range(SP_ans.shape[0]):
- min_d_ans[k] = SP_ans[min_ind_ans[k], k]
- min_ind_ans[np.isinf(min_d_ans)] = -9999
- SP, pred, sources = dijkstra(directed_G,
- directed=directed,
- indices=indices,
- min_only=True,
- return_predecessors=True)
- assert_array_almost_equal(SP, min_d_ans)
- assert_array_equal(min_ind_ans, sources)
- SP = dijkstra(directed_G,
- directed=directed,
- indices=indices,
- min_only=True,
- return_predecessors=False)
- assert_array_almost_equal(SP, min_d_ans)
- @pytest.mark.parametrize('n', (10, 100, 1000))
- def test_dijkstra_min_only_random(n):
- np.random.seed(1234)
- data = scipy.sparse.rand(n, n, density=0.5, format='lil',
- random_state=42, dtype=np.float64)
- data.setdiag(np.zeros(n, dtype=np.bool_))
-
- v = np.arange(n)
- np.random.shuffle(v)
- indices = v[:int(n*.1)]
- ds, pred, sources = dijkstra(data,
- directed=True,
- indices=indices,
- min_only=True,
- return_predecessors=True)
- for k in range(n):
- p = pred[k]
- s = sources[k]
- while p != -9999:
- assert sources[p] == s
- p = pred[p]
- def test_dijkstra_random():
-
- n = 10
- indices = [0, 4, 4, 5, 7, 9, 0, 6, 2, 3, 7, 9, 1, 2, 9, 2, 5, 6]
- indptr = [0, 0, 2, 5, 6, 7, 8, 12, 15, 18, 18]
- data = [0.33629, 0.40458, 0.47493, 0.42757, 0.11497, 0.91653, 0.69084,
- 0.64979, 0.62555, 0.743, 0.01724, 0.99945, 0.31095, 0.15557,
- 0.02439, 0.65814, 0.23478, 0.24072]
- graph = scipy.sparse.csr_matrix((data, indices, indptr), shape=(n, n))
- dijkstra(graph, directed=True, return_predecessors=True)
- def test_gh_17782_segfault():
- text = """%%MatrixMarket matrix coordinate real general
- 84 84 22
- 2 1 4.699999809265137e+00
- 6 14 1.199999973177910e-01
- 9 6 1.199999973177910e-01
- 10 16 2.012000083923340e+01
- 11 10 1.422000026702881e+01
- 12 1 9.645999908447266e+01
- 13 18 2.012000083923340e+01
- 14 13 4.679999828338623e+00
- 15 11 1.199999973177910e-01
- 16 12 1.199999973177910e-01
- 18 15 1.199999973177910e-01
- 32 2 2.299999952316284e+00
- 33 20 6.000000000000000e+00
- 33 32 5.000000000000000e+00
- 36 9 3.720000028610229e+00
- 36 37 3.720000028610229e+00
- 36 38 3.720000028610229e+00
- 37 44 8.159999847412109e+00
- 38 32 7.903999328613281e+01
- 43 20 2.400000000000000e+01
- 43 33 4.000000000000000e+00
- 44 43 6.028000259399414e+01
- """
- data = mmread(StringIO(text))
- dijkstra(data, directed=True, return_predecessors=True)
- def test_shortest_path_indices():
- indices = np.arange(4)
- def check(func, indshape):
- outshape = indshape + (5,)
- SP = func(directed_G, directed=False,
- indices=indices.reshape(indshape))
- assert_array_almost_equal(SP, undirected_SP[indices].reshape(outshape))
- for indshape in [(4,), (4, 1), (2, 2)]:
- for func in (dijkstra, bellman_ford, johnson, shortest_path):
- check(func, indshape)
- assert_raises(ValueError, shortest_path, directed_G, method='FW',
- indices=indices)
- def test_predecessors():
- SP_res = {True: directed_SP,
- False: undirected_SP}
- pred_res = {True: directed_pred,
- False: undirected_pred}
- def check(method, directed):
- SP, pred = shortest_path(directed_G, method, directed=directed,
- overwrite=False,
- return_predecessors=True)
- assert_array_almost_equal(SP, SP_res[directed])
- assert_array_almost_equal(pred, pred_res[directed])
- for method in methods:
- for directed in (True, False):
- check(method, directed)
- def test_construct_shortest_path():
- def check(method, directed):
- SP1, pred = shortest_path(directed_G,
- directed=directed,
- overwrite=False,
- return_predecessors=True)
- SP2 = construct_dist_matrix(directed_G, pred, directed=directed)
- assert_array_almost_equal(SP1, SP2)
- for method in methods:
- for directed in (True, False):
- check(method, directed)
- def test_unweighted_path():
- def check(method, directed):
- SP1 = shortest_path(directed_G,
- directed=directed,
- overwrite=False,
- unweighted=True)
- SP2 = shortest_path(unweighted_G,
- directed=directed,
- overwrite=False,
- unweighted=False)
- assert_array_almost_equal(SP1, SP2)
- for method in methods:
- for directed in (True, False):
- check(method, directed)
- def test_negative_cycles():
-
- graph = np.ones([5, 5])
- graph.flat[::6] = 0
- graph[1, 2] = -2
- def check(method, directed):
- assert_raises(NegativeCycleError, shortest_path, graph, method,
- directed)
- for method in ['FW', 'J', 'BF']:
- for directed in (True, False):
- check(method, directed)
- @pytest.mark.parametrize("method", ['FW', 'J', 'BF'])
- def test_negative_weights(method):
- SP = shortest_path(directed_negative_weighted_G, method, directed=True)
- assert_allclose(SP, directed_negative_weighted_SP, atol=1e-10)
- def test_masked_input():
- np.ma.masked_equal(directed_G, 0)
- def check(method):
- SP = shortest_path(directed_G, method=method, directed=True,
- overwrite=False)
- assert_array_almost_equal(SP, directed_SP)
- for method in methods:
- check(method)
- def test_overwrite():
- G = np.array([[0, 3, 3, 1, 2],
- [3, 0, 0, 2, 4],
- [3, 0, 0, 0, 0],
- [1, 2, 0, 0, 2],
- [2, 4, 0, 2, 0]], dtype=float)
- foo = G.copy()
- shortest_path(foo, overwrite=False)
- assert_array_equal(foo, G)
- @pytest.mark.parametrize('method', methods)
- def test_buffer(method):
-
-
-
-
-
- G = scipy.sparse.csr_matrix([[1.]])
- G.data.flags['WRITEABLE'] = False
- shortest_path(G, method=method)
- def test_NaN_warnings():
- with warnings.catch_warnings(record=True) as record:
- shortest_path(np.array([[0, 1], [np.nan, 0]]))
- for r in record:
- assert r.category is not RuntimeWarning
- def test_sparse_matrices():
-
- G_dense = np.array([[0, 3, 0, 0, 0],
- [0, 0, -1, 0, 0],
- [0, 0, 0, 2, 0],
- [0, 0, 0, 0, 4],
- [0, 0, 0, 0, 0]], dtype=float)
- SP = shortest_path(G_dense)
- G_csr = scipy.sparse.csr_matrix(G_dense)
- G_csc = scipy.sparse.csc_matrix(G_dense)
- G_lil = scipy.sparse.lil_matrix(G_dense)
- assert_array_almost_equal(SP, shortest_path(G_csr))
- assert_array_almost_equal(SP, shortest_path(G_csc))
- assert_array_almost_equal(SP, shortest_path(G_lil))
|