123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151 |
- import numpy as np
- import scipy.sparse
- __all__ = ['save_npz', 'load_npz']
- # Make loading safe vs. malicious input
- PICKLE_KWARGS = dict(allow_pickle=False)
- def save_npz(file, matrix, compressed=True):
- """ Save a sparse matrix to a file using ``.npz`` format.
- Parameters
- ----------
- file : str or file-like object
- Either the file name (string) or an open file (file-like object)
- where the data will be saved. If file is a string, the ``.npz``
- extension will be appended to the file name if it is not already
- there.
- matrix: spmatrix (format: ``csc``, ``csr``, ``bsr``, ``dia`` or coo``)
- The sparse matrix to save.
- compressed : bool, optional
- Allow compressing the file. Default: True
- See Also
- --------
- scipy.sparse.load_npz: Load a sparse matrix from a file using ``.npz`` format.
- numpy.savez: Save several arrays into a ``.npz`` archive.
- numpy.savez_compressed : Save several arrays into a compressed ``.npz`` archive.
- Examples
- --------
- Store sparse matrix to disk, and load it again:
- >>> import numpy as np
- >>> import scipy.sparse
- >>> sparse_matrix = scipy.sparse.csc_matrix(np.array([[0, 0, 3], [4, 0, 0]]))
- >>> sparse_matrix
- <2x3 sparse matrix of type '<class 'numpy.int64'>'
- with 2 stored elements in Compressed Sparse Column format>
- >>> sparse_matrix.toarray()
- array([[0, 0, 3],
- [4, 0, 0]], dtype=int64)
- >>> scipy.sparse.save_npz('/tmp/sparse_matrix.npz', sparse_matrix)
- >>> sparse_matrix = scipy.sparse.load_npz('/tmp/sparse_matrix.npz')
- >>> sparse_matrix
- <2x3 sparse matrix of type '<class 'numpy.int64'>'
- with 2 stored elements in Compressed Sparse Column format>
- >>> sparse_matrix.toarray()
- array([[0, 0, 3],
- [4, 0, 0]], dtype=int64)
- """
- arrays_dict = {}
- if matrix.format in ('csc', 'csr', 'bsr'):
- arrays_dict.update(indices=matrix.indices, indptr=matrix.indptr)
- elif matrix.format == 'dia':
- arrays_dict.update(offsets=matrix.offsets)
- elif matrix.format == 'coo':
- arrays_dict.update(row=matrix.row, col=matrix.col)
- else:
- raise NotImplementedError('Save is not implemented for sparse matrix of format {}.'.format(matrix.format))
- arrays_dict.update(
- format=matrix.format.encode('ascii'),
- shape=matrix.shape,
- data=matrix.data
- )
- if compressed:
- np.savez_compressed(file, **arrays_dict)
- else:
- np.savez(file, **arrays_dict)
- def load_npz(file):
- """ Load a sparse matrix from a file using ``.npz`` format.
- Parameters
- ----------
- file : str or file-like object
- Either the file name (string) or an open file (file-like object)
- where the data will be loaded.
- Returns
- -------
- result : csc_matrix, csr_matrix, bsr_matrix, dia_matrix or coo_matrix
- A sparse matrix containing the loaded data.
- Raises
- ------
- OSError
- If the input file does not exist or cannot be read.
- See Also
- --------
- scipy.sparse.save_npz: Save a sparse matrix to a file using ``.npz`` format.
- numpy.load: Load several arrays from a ``.npz`` archive.
- Examples
- --------
- Store sparse matrix to disk, and load it again:
- >>> import numpy as np
- >>> import scipy.sparse
- >>> sparse_matrix = scipy.sparse.csc_matrix(np.array([[0, 0, 3], [4, 0, 0]]))
- >>> sparse_matrix
- <2x3 sparse matrix of type '<class 'numpy.int64'>'
- with 2 stored elements in Compressed Sparse Column format>
- >>> sparse_matrix.toarray()
- array([[0, 0, 3],
- [4, 0, 0]], dtype=int64)
- >>> scipy.sparse.save_npz('/tmp/sparse_matrix.npz', sparse_matrix)
- >>> sparse_matrix = scipy.sparse.load_npz('/tmp/sparse_matrix.npz')
- >>> sparse_matrix
- <2x3 sparse matrix of type '<class 'numpy.int64'>'
- with 2 stored elements in Compressed Sparse Column format>
- >>> sparse_matrix.toarray()
- array([[0, 0, 3],
- [4, 0, 0]], dtype=int64)
- """
- with np.load(file, **PICKLE_KWARGS) as loaded:
- try:
- matrix_format = loaded['format']
- except KeyError as e:
- raise ValueError('The file {} does not contain a sparse matrix.'.format(file)) from e
- matrix_format = matrix_format.item()
- if not isinstance(matrix_format, str):
- # Play safe with Python 2 vs 3 backward compatibility;
- # files saved with SciPy < 1.0.0 may contain unicode or bytes.
- matrix_format = matrix_format.decode('ascii')
- try:
- cls = getattr(scipy.sparse, '{}_matrix'.format(matrix_format))
- except AttributeError as e:
- raise ValueError('Unknown matrix format "{}"'.format(matrix_format)) from e
- if matrix_format in ('csc', 'csr', 'bsr'):
- return cls((loaded['data'], loaded['indices'], loaded['indptr']), shape=loaded['shape'])
- elif matrix_format == 'dia':
- return cls((loaded['data'], loaded['offsets']), shape=loaded['shape'])
- elif matrix_format == 'coo':
- return cls((loaded['data'], (loaded['row'], loaded['col'])), shape=loaded['shape'])
- else:
- raise NotImplementedError('Load is not implemented for '
- 'sparse matrix of format {}.'.format(matrix_format))
|