123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672 |
- # Author: Travis Oliphant
- # 2003
- #
- # Feb. 2010: Updated by Warren Weckesser:
- # Rewrote much of chirp()
- # Added sweep_poly()
- import numpy as np
- from numpy import asarray, zeros, place, nan, mod, pi, extract, log, sqrt, \
- exp, cos, sin, polyval, polyint
- __all__ = ['sawtooth', 'square', 'gausspulse', 'chirp', 'sweep_poly',
- 'unit_impulse']
- def sawtooth(t, width=1):
- """
- Return a periodic sawtooth or triangle waveform.
- The sawtooth waveform has a period ``2*pi``, rises from -1 to 1 on the
- interval 0 to ``width*2*pi``, then drops from 1 to -1 on the interval
- ``width*2*pi`` to ``2*pi``. `width` must be in the interval [0, 1].
- Note that this is not band-limited. It produces an infinite number
- of harmonics, which are aliased back and forth across the frequency
- spectrum.
- Parameters
- ----------
- t : array_like
- Time.
- width : array_like, optional
- Width of the rising ramp as a proportion of the total cycle.
- Default is 1, producing a rising ramp, while 0 produces a falling
- ramp. `width` = 0.5 produces a triangle wave.
- If an array, causes wave shape to change over time, and must be the
- same length as t.
- Returns
- -------
- y : ndarray
- Output array containing the sawtooth waveform.
- Examples
- --------
- A 5 Hz waveform sampled at 500 Hz for 1 second:
- >>> import numpy as np
- >>> from scipy import signal
- >>> import matplotlib.pyplot as plt
- >>> t = np.linspace(0, 1, 500)
- >>> plt.plot(t, signal.sawtooth(2 * np.pi * 5 * t))
- """
- t, w = asarray(t), asarray(width)
- w = asarray(w + (t - t))
- t = asarray(t + (w - w))
- if t.dtype.char in ['fFdD']:
- ytype = t.dtype.char
- else:
- ytype = 'd'
- y = zeros(t.shape, ytype)
- # width must be between 0 and 1 inclusive
- mask1 = (w > 1) | (w < 0)
- place(y, mask1, nan)
- # take t modulo 2*pi
- tmod = mod(t, 2 * pi)
- # on the interval 0 to width*2*pi function is
- # tmod / (pi*w) - 1
- mask2 = (1 - mask1) & (tmod < w * 2 * pi)
- tsub = extract(mask2, tmod)
- wsub = extract(mask2, w)
- place(y, mask2, tsub / (pi * wsub) - 1)
- # on the interval width*2*pi to 2*pi function is
- # (pi*(w+1)-tmod) / (pi*(1-w))
- mask3 = (1 - mask1) & (1 - mask2)
- tsub = extract(mask3, tmod)
- wsub = extract(mask3, w)
- place(y, mask3, (pi * (wsub + 1) - tsub) / (pi * (1 - wsub)))
- return y
- def square(t, duty=0.5):
- """
- Return a periodic square-wave waveform.
- The square wave has a period ``2*pi``, has value +1 from 0 to
- ``2*pi*duty`` and -1 from ``2*pi*duty`` to ``2*pi``. `duty` must be in
- the interval [0,1].
- Note that this is not band-limited. It produces an infinite number
- of harmonics, which are aliased back and forth across the frequency
- spectrum.
- Parameters
- ----------
- t : array_like
- The input time array.
- duty : array_like, optional
- Duty cycle. Default is 0.5 (50% duty cycle).
- If an array, causes wave shape to change over time, and must be the
- same length as t.
- Returns
- -------
- y : ndarray
- Output array containing the square waveform.
- Examples
- --------
- A 5 Hz waveform sampled at 500 Hz for 1 second:
- >>> import numpy as np
- >>> from scipy import signal
- >>> import matplotlib.pyplot as plt
- >>> t = np.linspace(0, 1, 500, endpoint=False)
- >>> plt.plot(t, signal.square(2 * np.pi * 5 * t))
- >>> plt.ylim(-2, 2)
- A pulse-width modulated sine wave:
- >>> plt.figure()
- >>> sig = np.sin(2 * np.pi * t)
- >>> pwm = signal.square(2 * np.pi * 30 * t, duty=(sig + 1)/2)
- >>> plt.subplot(2, 1, 1)
- >>> plt.plot(t, sig)
- >>> plt.subplot(2, 1, 2)
- >>> plt.plot(t, pwm)
- >>> plt.ylim(-1.5, 1.5)
- """
- t, w = asarray(t), asarray(duty)
- w = asarray(w + (t - t))
- t = asarray(t + (w - w))
- if t.dtype.char in ['fFdD']:
- ytype = t.dtype.char
- else:
- ytype = 'd'
- y = zeros(t.shape, ytype)
- # width must be between 0 and 1 inclusive
- mask1 = (w > 1) | (w < 0)
- place(y, mask1, nan)
- # on the interval 0 to duty*2*pi function is 1
- tmod = mod(t, 2 * pi)
- mask2 = (1 - mask1) & (tmod < w * 2 * pi)
- place(y, mask2, 1)
- # on the interval duty*2*pi to 2*pi function is
- # (pi*(w+1)-tmod) / (pi*(1-w))
- mask3 = (1 - mask1) & (1 - mask2)
- place(y, mask3, -1)
- return y
- def gausspulse(t, fc=1000, bw=0.5, bwr=-6, tpr=-60, retquad=False,
- retenv=False):
- """
- Return a Gaussian modulated sinusoid:
- ``exp(-a t^2) exp(1j*2*pi*fc*t).``
- If `retquad` is True, then return the real and imaginary parts
- (in-phase and quadrature).
- If `retenv` is True, then return the envelope (unmodulated signal).
- Otherwise, return the real part of the modulated sinusoid.
- Parameters
- ----------
- t : ndarray or the string 'cutoff'
- Input array.
- fc : float, optional
- Center frequency (e.g. Hz). Default is 1000.
- bw : float, optional
- Fractional bandwidth in frequency domain of pulse (e.g. Hz).
- Default is 0.5.
- bwr : float, optional
- Reference level at which fractional bandwidth is calculated (dB).
- Default is -6.
- tpr : float, optional
- If `t` is 'cutoff', then the function returns the cutoff
- time for when the pulse amplitude falls below `tpr` (in dB).
- Default is -60.
- retquad : bool, optional
- If True, return the quadrature (imaginary) as well as the real part
- of the signal. Default is False.
- retenv : bool, optional
- If True, return the envelope of the signal. Default is False.
- Returns
- -------
- yI : ndarray
- Real part of signal. Always returned.
- yQ : ndarray
- Imaginary part of signal. Only returned if `retquad` is True.
- yenv : ndarray
- Envelope of signal. Only returned if `retenv` is True.
- See Also
- --------
- scipy.signal.morlet
- Examples
- --------
- Plot real component, imaginary component, and envelope for a 5 Hz pulse,
- sampled at 100 Hz for 2 seconds:
- >>> import numpy as np
- >>> from scipy import signal
- >>> import matplotlib.pyplot as plt
- >>> t = np.linspace(-1, 1, 2 * 100, endpoint=False)
- >>> i, q, e = signal.gausspulse(t, fc=5, retquad=True, retenv=True)
- >>> plt.plot(t, i, t, q, t, e, '--')
- """
- if fc < 0:
- raise ValueError("Center frequency (fc=%.2f) must be >=0." % fc)
- if bw <= 0:
- raise ValueError("Fractional bandwidth (bw=%.2f) must be > 0." % bw)
- if bwr >= 0:
- raise ValueError("Reference level for bandwidth (bwr=%.2f) must "
- "be < 0 dB" % bwr)
- # exp(-a t^2) <-> sqrt(pi/a) exp(-pi^2/a * f^2) = g(f)
- ref = pow(10.0, bwr / 20.0)
- # fdel = fc*bw/2: g(fdel) = ref --- solve this for a
- #
- # pi^2/a * fc^2 * bw^2 /4=-log(ref)
- a = -(pi * fc * bw) ** 2 / (4.0 * log(ref))
- if isinstance(t, str):
- if t == 'cutoff': # compute cut_off point
- # Solve exp(-a tc**2) = tref for tc
- # tc = sqrt(-log(tref) / a) where tref = 10^(tpr/20)
- if tpr >= 0:
- raise ValueError("Reference level for time cutoff must "
- "be < 0 dB")
- tref = pow(10.0, tpr / 20.0)
- return sqrt(-log(tref) / a)
- else:
- raise ValueError("If `t` is a string, it must be 'cutoff'")
- yenv = exp(-a * t * t)
- yI = yenv * cos(2 * pi * fc * t)
- yQ = yenv * sin(2 * pi * fc * t)
- if not retquad and not retenv:
- return yI
- if not retquad and retenv:
- return yI, yenv
- if retquad and not retenv:
- return yI, yQ
- if retquad and retenv:
- return yI, yQ, yenv
- def chirp(t, f0, t1, f1, method='linear', phi=0, vertex_zero=True):
- """Frequency-swept cosine generator.
- In the following, 'Hz' should be interpreted as 'cycles per unit';
- there is no requirement here that the unit is one second. The
- important distinction is that the units of rotation are cycles, not
- radians. Likewise, `t` could be a measurement of space instead of time.
- Parameters
- ----------
- t : array_like
- Times at which to evaluate the waveform.
- f0 : float
- Frequency (e.g. Hz) at time t=0.
- t1 : float
- Time at which `f1` is specified.
- f1 : float
- Frequency (e.g. Hz) of the waveform at time `t1`.
- method : {'linear', 'quadratic', 'logarithmic', 'hyperbolic'}, optional
- Kind of frequency sweep. If not given, `linear` is assumed. See
- Notes below for more details.
- phi : float, optional
- Phase offset, in degrees. Default is 0.
- vertex_zero : bool, optional
- This parameter is only used when `method` is 'quadratic'.
- It determines whether the vertex of the parabola that is the graph
- of the frequency is at t=0 or t=t1.
- Returns
- -------
- y : ndarray
- A numpy array containing the signal evaluated at `t` with the
- requested time-varying frequency. More precisely, the function
- returns ``cos(phase + (pi/180)*phi)`` where `phase` is the integral
- (from 0 to `t`) of ``2*pi*f(t)``. ``f(t)`` is defined below.
- See Also
- --------
- sweep_poly
- Notes
- -----
- There are four options for the `method`. The following formulas give
- the instantaneous frequency (in Hz) of the signal generated by
- `chirp()`. For convenience, the shorter names shown below may also be
- used.
- linear, lin, li:
- ``f(t) = f0 + (f1 - f0) * t / t1``
- quadratic, quad, q:
- The graph of the frequency f(t) is a parabola through (0, f0) and
- (t1, f1). By default, the vertex of the parabola is at (0, f0).
- If `vertex_zero` is False, then the vertex is at (t1, f1). The
- formula is:
- if vertex_zero is True:
- ``f(t) = f0 + (f1 - f0) * t**2 / t1**2``
- else:
- ``f(t) = f1 - (f1 - f0) * (t1 - t)**2 / t1**2``
- To use a more general quadratic function, or an arbitrary
- polynomial, use the function `scipy.signal.sweep_poly`.
- logarithmic, log, lo:
- ``f(t) = f0 * (f1/f0)**(t/t1)``
- f0 and f1 must be nonzero and have the same sign.
- This signal is also known as a geometric or exponential chirp.
- hyperbolic, hyp:
- ``f(t) = f0*f1*t1 / ((f0 - f1)*t + f1*t1)``
- f0 and f1 must be nonzero.
- Examples
- --------
- The following will be used in the examples:
- >>> import numpy as np
- >>> from scipy.signal import chirp, spectrogram
- >>> import matplotlib.pyplot as plt
- For the first example, we'll plot the waveform for a linear chirp
- from 6 Hz to 1 Hz over 10 seconds:
- >>> t = np.linspace(0, 10, 1500)
- >>> w = chirp(t, f0=6, f1=1, t1=10, method='linear')
- >>> plt.plot(t, w)
- >>> plt.title("Linear Chirp, f(0)=6, f(10)=1")
- >>> plt.xlabel('t (sec)')
- >>> plt.show()
- For the remaining examples, we'll use higher frequency ranges,
- and demonstrate the result using `scipy.signal.spectrogram`.
- We'll use a 4 second interval sampled at 7200 Hz.
- >>> fs = 7200
- >>> T = 4
- >>> t = np.arange(0, int(T*fs)) / fs
- We'll use this function to plot the spectrogram in each example.
- >>> def plot_spectrogram(title, w, fs):
- ... ff, tt, Sxx = spectrogram(w, fs=fs, nperseg=256, nfft=576)
- ... fig, ax = plt.subplots()
- ... ax.pcolormesh(tt, ff[:145], Sxx[:145], cmap='gray_r',
- ... shading='gouraud')
- ... ax.set_title(title)
- ... ax.set_xlabel('t (sec)')
- ... ax.set_ylabel('Frequency (Hz)')
- ... ax.grid(True)
- ...
- Quadratic chirp from 1500 Hz to 250 Hz
- (vertex of the parabolic curve of the frequency is at t=0):
- >>> w = chirp(t, f0=1500, f1=250, t1=T, method='quadratic')
- >>> plot_spectrogram(f'Quadratic Chirp, f(0)=1500, f({T})=250', w, fs)
- >>> plt.show()
- Quadratic chirp from 1500 Hz to 250 Hz
- (vertex of the parabolic curve of the frequency is at t=T):
- >>> w = chirp(t, f0=1500, f1=250, t1=T, method='quadratic',
- ... vertex_zero=False)
- >>> plot_spectrogram(f'Quadratic Chirp, f(0)=1500, f({T})=250\\n' +
- ... '(vertex_zero=False)', w, fs)
- >>> plt.show()
- Logarithmic chirp from 1500 Hz to 250 Hz:
- >>> w = chirp(t, f0=1500, f1=250, t1=T, method='logarithmic')
- >>> plot_spectrogram(f'Logarithmic Chirp, f(0)=1500, f({T})=250', w, fs)
- >>> plt.show()
- Hyperbolic chirp from 1500 Hz to 250 Hz:
- >>> w = chirp(t, f0=1500, f1=250, t1=T, method='hyperbolic')
- >>> plot_spectrogram(f'Hyperbolic Chirp, f(0)=1500, f({T})=250', w, fs)
- >>> plt.show()
- """
- # 'phase' is computed in _chirp_phase, to make testing easier.
- phase = _chirp_phase(t, f0, t1, f1, method, vertex_zero)
- # Convert phi to radians.
- phi *= pi / 180
- return cos(phase + phi)
- def _chirp_phase(t, f0, t1, f1, method='linear', vertex_zero=True):
- """
- Calculate the phase used by `chirp` to generate its output.
- See `chirp` for a description of the arguments.
- """
- t = asarray(t)
- f0 = float(f0)
- t1 = float(t1)
- f1 = float(f1)
- if method in ['linear', 'lin', 'li']:
- beta = (f1 - f0) / t1
- phase = 2 * pi * (f0 * t + 0.5 * beta * t * t)
- elif method in ['quadratic', 'quad', 'q']:
- beta = (f1 - f0) / (t1 ** 2)
- if vertex_zero:
- phase = 2 * pi * (f0 * t + beta * t ** 3 / 3)
- else:
- phase = 2 * pi * (f1 * t + beta * ((t1 - t) ** 3 - t1 ** 3) / 3)
- elif method in ['logarithmic', 'log', 'lo']:
- if f0 * f1 <= 0.0:
- raise ValueError("For a logarithmic chirp, f0 and f1 must be "
- "nonzero and have the same sign.")
- if f0 == f1:
- phase = 2 * pi * f0 * t
- else:
- beta = t1 / log(f1 / f0)
- phase = 2 * pi * beta * f0 * (pow(f1 / f0, t / t1) - 1.0)
- elif method in ['hyperbolic', 'hyp']:
- if f0 == 0 or f1 == 0:
- raise ValueError("For a hyperbolic chirp, f0 and f1 must be "
- "nonzero.")
- if f0 == f1:
- # Degenerate case: constant frequency.
- phase = 2 * pi * f0 * t
- else:
- # Singular point: the instantaneous frequency blows up
- # when t == sing.
- sing = -f1 * t1 / (f0 - f1)
- phase = 2 * pi * (-sing * f0) * log(np.abs(1 - t/sing))
- else:
- raise ValueError("method must be 'linear', 'quadratic', 'logarithmic',"
- " or 'hyperbolic', but a value of %r was given."
- % method)
- return phase
- def sweep_poly(t, poly, phi=0):
- """
- Frequency-swept cosine generator, with a time-dependent frequency.
- This function generates a sinusoidal function whose instantaneous
- frequency varies with time. The frequency at time `t` is given by
- the polynomial `poly`.
- Parameters
- ----------
- t : ndarray
- Times at which to evaluate the waveform.
- poly : 1-D array_like or instance of numpy.poly1d
- The desired frequency expressed as a polynomial. If `poly` is
- a list or ndarray of length n, then the elements of `poly` are
- the coefficients of the polynomial, and the instantaneous
- frequency is
- ``f(t) = poly[0]*t**(n-1) + poly[1]*t**(n-2) + ... + poly[n-1]``
- If `poly` is an instance of numpy.poly1d, then the
- instantaneous frequency is
- ``f(t) = poly(t)``
- phi : float, optional
- Phase offset, in degrees, Default: 0.
- Returns
- -------
- sweep_poly : ndarray
- A numpy array containing the signal evaluated at `t` with the
- requested time-varying frequency. More precisely, the function
- returns ``cos(phase + (pi/180)*phi)``, where `phase` is the integral
- (from 0 to t) of ``2 * pi * f(t)``; ``f(t)`` is defined above.
- See Also
- --------
- chirp
- Notes
- -----
- .. versionadded:: 0.8.0
- If `poly` is a list or ndarray of length `n`, then the elements of
- `poly` are the coefficients of the polynomial, and the instantaneous
- frequency is:
- ``f(t) = poly[0]*t**(n-1) + poly[1]*t**(n-2) + ... + poly[n-1]``
- If `poly` is an instance of `numpy.poly1d`, then the instantaneous
- frequency is:
- ``f(t) = poly(t)``
- Finally, the output `s` is:
- ``cos(phase + (pi/180)*phi)``
- where `phase` is the integral from 0 to `t` of ``2 * pi * f(t)``,
- ``f(t)`` as defined above.
- Examples
- --------
- Compute the waveform with instantaneous frequency::
- f(t) = 0.025*t**3 - 0.36*t**2 + 1.25*t + 2
- over the interval 0 <= t <= 10.
- >>> import numpy as np
- >>> from scipy.signal import sweep_poly
- >>> p = np.poly1d([0.025, -0.36, 1.25, 2.0])
- >>> t = np.linspace(0, 10, 5001)
- >>> w = sweep_poly(t, p)
- Plot it:
- >>> import matplotlib.pyplot as plt
- >>> plt.subplot(2, 1, 1)
- >>> plt.plot(t, w)
- >>> plt.title("Sweep Poly\\nwith frequency " +
- ... "$f(t) = 0.025t^3 - 0.36t^2 + 1.25t + 2$")
- >>> plt.subplot(2, 1, 2)
- >>> plt.plot(t, p(t), 'r', label='f(t)')
- >>> plt.legend()
- >>> plt.xlabel('t')
- >>> plt.tight_layout()
- >>> plt.show()
- """
- # 'phase' is computed in _sweep_poly_phase, to make testing easier.
- phase = _sweep_poly_phase(t, poly)
- # Convert to radians.
- phi *= pi / 180
- return cos(phase + phi)
- def _sweep_poly_phase(t, poly):
- """
- Calculate the phase used by sweep_poly to generate its output.
- See `sweep_poly` for a description of the arguments.
- """
- # polyint handles lists, ndarrays and instances of poly1d automatically.
- intpoly = polyint(poly)
- phase = 2 * pi * polyval(intpoly, t)
- return phase
- def unit_impulse(shape, idx=None, dtype=float):
- """
- Unit impulse signal (discrete delta function) or unit basis vector.
- Parameters
- ----------
- shape : int or tuple of int
- Number of samples in the output (1-D), or a tuple that represents the
- shape of the output (N-D).
- idx : None or int or tuple of int or 'mid', optional
- Index at which the value is 1. If None, defaults to the 0th element.
- If ``idx='mid'``, the impulse will be centered at ``shape // 2`` in
- all dimensions. If an int, the impulse will be at `idx` in all
- dimensions.
- dtype : data-type, optional
- The desired data-type for the array, e.g., ``numpy.int8``. Default is
- ``numpy.float64``.
- Returns
- -------
- y : ndarray
- Output array containing an impulse signal.
- Notes
- -----
- The 1D case is also known as the Kronecker delta.
- .. versionadded:: 0.19.0
- Examples
- --------
- An impulse at the 0th element (:math:`\\delta[n]`):
- >>> from scipy import signal
- >>> signal.unit_impulse(8)
- array([ 1., 0., 0., 0., 0., 0., 0., 0.])
- Impulse offset by 2 samples (:math:`\\delta[n-2]`):
- >>> signal.unit_impulse(7, 2)
- array([ 0., 0., 1., 0., 0., 0., 0.])
- 2-dimensional impulse, centered:
- >>> signal.unit_impulse((3, 3), 'mid')
- array([[ 0., 0., 0.],
- [ 0., 1., 0.],
- [ 0., 0., 0.]])
- Impulse at (2, 2), using broadcasting:
- >>> signal.unit_impulse((4, 4), 2)
- array([[ 0., 0., 0., 0.],
- [ 0., 0., 0., 0.],
- [ 0., 0., 1., 0.],
- [ 0., 0., 0., 0.]])
- Plot the impulse response of a 4th-order Butterworth lowpass filter:
- >>> imp = signal.unit_impulse(100, 'mid')
- >>> b, a = signal.butter(4, 0.2)
- >>> response = signal.lfilter(b, a, imp)
- >>> import numpy as np
- >>> import matplotlib.pyplot as plt
- >>> plt.plot(np.arange(-50, 50), imp)
- >>> plt.plot(np.arange(-50, 50), response)
- >>> plt.margins(0.1, 0.1)
- >>> plt.xlabel('Time [samples]')
- >>> plt.ylabel('Amplitude')
- >>> plt.grid(True)
- >>> plt.show()
- """
- out = zeros(shape, dtype)
- shape = np.atleast_1d(shape)
- if idx is None:
- idx = (0,) * len(shape)
- elif idx == 'mid':
- idx = tuple(shape // 2)
- elif not hasattr(idx, "__iter__"):
- idx = (idx,) * len(shape)
- out[idx] = 1
- return out
|