123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139 |
- # Author: Eric Larson
- # 2014
- """Tools for MLS generation"""
- import numpy as np
- from ._max_len_seq_inner import _max_len_seq_inner
- __all__ = ['max_len_seq']
- # These are definitions of linear shift register taps for use in max_len_seq()
- _mls_taps = {2: [1], 3: [2], 4: [3], 5: [3], 6: [5], 7: [6], 8: [7, 6, 1],
- 9: [5], 10: [7], 11: [9], 12: [11, 10, 4], 13: [12, 11, 8],
- 14: [13, 12, 2], 15: [14], 16: [15, 13, 4], 17: [14],
- 18: [11], 19: [18, 17, 14], 20: [17], 21: [19], 22: [21],
- 23: [18], 24: [23, 22, 17], 25: [22], 26: [25, 24, 20],
- 27: [26, 25, 22], 28: [25], 29: [27], 30: [29, 28, 7],
- 31: [28], 32: [31, 30, 10]}
- def max_len_seq(nbits, state=None, length=None, taps=None):
- """
- Maximum length sequence (MLS) generator.
- Parameters
- ----------
- nbits : int
- Number of bits to use. Length of the resulting sequence will
- be ``(2**nbits) - 1``. Note that generating long sequences
- (e.g., greater than ``nbits == 16``) can take a long time.
- state : array_like, optional
- If array, must be of length ``nbits``, and will be cast to binary
- (bool) representation. If None, a seed of ones will be used,
- producing a repeatable representation. If ``state`` is all
- zeros, an error is raised as this is invalid. Default: None.
- length : int, optional
- Number of samples to compute. If None, the entire length
- ``(2**nbits) - 1`` is computed.
- taps : array_like, optional
- Polynomial taps to use (e.g., ``[7, 6, 1]`` for an 8-bit sequence).
- If None, taps will be automatically selected (for up to
- ``nbits == 32``).
- Returns
- -------
- seq : array
- Resulting MLS sequence of 0's and 1's.
- state : array
- The final state of the shift register.
- Notes
- -----
- The algorithm for MLS generation is generically described in:
- https://en.wikipedia.org/wiki/Maximum_length_sequence
- The default values for taps are specifically taken from the first
- option listed for each value of ``nbits`` in:
- https://web.archive.org/web/20181001062252/http://www.newwaveinstruments.com/resources/articles/m_sequence_linear_feedback_shift_register_lfsr.htm
- .. versionadded:: 0.15.0
- Examples
- --------
- MLS uses binary convention:
- >>> from scipy.signal import max_len_seq
- >>> max_len_seq(4)[0]
- array([1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0], dtype=int8)
- MLS has a white spectrum (except for DC):
- >>> import numpy as np
- >>> import matplotlib.pyplot as plt
- >>> from numpy.fft import fft, ifft, fftshift, fftfreq
- >>> seq = max_len_seq(6)[0]*2-1 # +1 and -1
- >>> spec = fft(seq)
- >>> N = len(seq)
- >>> plt.plot(fftshift(fftfreq(N)), fftshift(np.abs(spec)), '.-')
- >>> plt.margins(0.1, 0.1)
- >>> plt.grid(True)
- >>> plt.show()
- Circular autocorrelation of MLS is an impulse:
- >>> acorrcirc = ifft(spec * np.conj(spec)).real
- >>> plt.figure()
- >>> plt.plot(np.arange(-N/2+1, N/2+1), fftshift(acorrcirc), '.-')
- >>> plt.margins(0.1, 0.1)
- >>> plt.grid(True)
- >>> plt.show()
- Linear autocorrelation of MLS is approximately an impulse:
- >>> acorr = np.correlate(seq, seq, 'full')
- >>> plt.figure()
- >>> plt.plot(np.arange(-N+1, N), acorr, '.-')
- >>> plt.margins(0.1, 0.1)
- >>> plt.grid(True)
- >>> plt.show()
- """
- taps_dtype = np.int32 if np.intp().itemsize == 4 else np.int64
- if taps is None:
- if nbits not in _mls_taps:
- known_taps = np.array(list(_mls_taps.keys()))
- raise ValueError('nbits must be between %s and %s if taps is None'
- % (known_taps.min(), known_taps.max()))
- taps = np.array(_mls_taps[nbits], taps_dtype)
- else:
- taps = np.unique(np.array(taps, taps_dtype))[::-1]
- if np.any(taps < 0) or np.any(taps > nbits) or taps.size < 1:
- raise ValueError('taps must be non-empty with values between '
- 'zero and nbits (inclusive)')
- taps = np.array(taps) # needed for Cython and Pythran
- n_max = (2**nbits) - 1
- if length is None:
- length = n_max
- else:
- length = int(length)
- if length < 0:
- raise ValueError('length must be greater than or equal to 0')
- # We use int8 instead of bool here because NumPy arrays of bools
- # don't seem to work nicely with Cython
- if state is None:
- state = np.ones(nbits, dtype=np.int8, order='c')
- else:
- # makes a copy if need be, ensuring it's 0's and 1's
- state = np.array(state, dtype=bool, order='c').astype(np.int8)
- if state.ndim != 1 or state.size != nbits:
- raise ValueError('state must be a 1-D array of size nbits')
- if np.all(state == 0):
- raise ValueError('state must not be all zeros')
- seq = np.empty(length, dtype=np.int8, order='c')
- state = _max_len_seq_inner(taps, state, nbits, length, seq)
- return seq, state
|