123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770 |
- import pytest
- from math import sqrt, exp, sin, cos
- from functools import lru_cache
- from numpy.testing import (assert_warns, assert_,
- assert_allclose,
- assert_equal,
- assert_array_equal,
- suppress_warnings)
- import numpy as np
- from numpy import finfo, power, nan, isclose
- from scipy.optimize import _zeros_py as zeros, newton, root_scalar
- from scipy._lib._util import getfullargspec_no_self as _getfullargspec
- # Import testing parameters
- from scipy.optimize._tstutils import get_tests, functions as tstutils_functions, fstrings as tstutils_fstrings
- TOL = 4*np.finfo(float).eps # tolerance
- _FLOAT_EPS = finfo(float).eps
- # A few test functions used frequently:
- # # A simple quadratic, (x-1)^2 - 1
- def f1(x):
- return x ** 2 - 2 * x - 1
- def f1_1(x):
- return 2 * x - 2
- def f1_2(x):
- return 2.0 + 0 * x
- def f1_and_p_and_pp(x):
- return f1(x), f1_1(x), f1_2(x)
- # Simple transcendental function
- def f2(x):
- return exp(x) - cos(x)
- def f2_1(x):
- return exp(x) + sin(x)
- def f2_2(x):
- return exp(x) + cos(x)
- # lru cached function
- @lru_cache()
- def f_lrucached(x):
- return x
- class TestBasic:
- def run_check_by_name(self, name, smoothness=0, **kwargs):
- a = .5
- b = sqrt(3)
- xtol = 4*np.finfo(float).eps
- rtol = 4*np.finfo(float).eps
- for function, fname in zip(tstutils_functions, tstutils_fstrings):
- if smoothness > 0 and fname in ['f4', 'f5', 'f6']:
- continue
- r = root_scalar(function, method=name, bracket=[a, b], x0=a,
- xtol=xtol, rtol=rtol, **kwargs)
- zero = r.root
- assert_(r.converged)
- assert_allclose(zero, 1.0, atol=xtol, rtol=rtol,
- err_msg='method %s, function %s' % (name, fname))
- def run_check(self, method, name):
- a = .5
- b = sqrt(3)
- xtol = 4 * _FLOAT_EPS
- rtol = 4 * _FLOAT_EPS
- for function, fname in zip(tstutils_functions, tstutils_fstrings):
- zero, r = method(function, a, b, xtol=xtol, rtol=rtol,
- full_output=True)
- assert_(r.converged)
- assert_allclose(zero, 1.0, atol=xtol, rtol=rtol,
- err_msg='method %s, function %s' % (name, fname))
- def run_check_lru_cached(self, method, name):
- # check that https://github.com/scipy/scipy/issues/10846 is fixed
- a = -1
- b = 1
- zero, r = method(f_lrucached, a, b, full_output=True)
- assert_(r.converged)
- assert_allclose(zero, 0,
- err_msg='method %s, function %s' % (name, 'f_lrucached'))
- def _run_one_test(self, tc, method, sig_args_keys=None,
- sig_kwargs_keys=None, **kwargs):
- method_args = []
- for k in sig_args_keys or []:
- if k not in tc:
- # If a,b not present use x0, x1. Similarly for f and func
- k = {'a': 'x0', 'b': 'x1', 'func': 'f'}.get(k, k)
- method_args.append(tc[k])
- method_kwargs = dict(**kwargs)
- method_kwargs.update({'full_output': True, 'disp': False})
- for k in sig_kwargs_keys or []:
- method_kwargs[k] = tc[k]
- root = tc.get('root')
- func_args = tc.get('args', ())
- try:
- r, rr = method(*method_args, args=func_args, **method_kwargs)
- return root, rr, tc
- except Exception:
- return root, zeros.RootResults(nan, -1, -1, zeros._EVALUEERR), tc
- def run_tests(self, tests, method, name,
- xtol=4 * _FLOAT_EPS, rtol=4 * _FLOAT_EPS,
- known_fail=None, **kwargs):
- r"""Run test-cases using the specified method and the supplied signature.
- Extract the arguments for the method call from the test case
- dictionary using the supplied keys for the method's signature."""
- # The methods have one of two base signatures:
- # (f, a, b, **kwargs) # newton
- # (func, x0, **kwargs) # bisect/brentq/...
- sig = _getfullargspec(method) # FullArgSpec with args, varargs, varkw, defaults, ...
- assert_(not sig.kwonlyargs)
- nDefaults = len(sig.defaults)
- nRequired = len(sig.args) - nDefaults
- sig_args_keys = sig.args[:nRequired]
- sig_kwargs_keys = []
- if name in ['secant', 'newton', 'halley']:
- if name in ['newton', 'halley']:
- sig_kwargs_keys.append('fprime')
- if name in ['halley']:
- sig_kwargs_keys.append('fprime2')
- kwargs['tol'] = xtol
- else:
- kwargs['xtol'] = xtol
- kwargs['rtol'] = rtol
- results = [list(self._run_one_test(
- tc, method, sig_args_keys=sig_args_keys,
- sig_kwargs_keys=sig_kwargs_keys, **kwargs)) for tc in tests]
- # results= [[true root, full output, tc], ...]
- known_fail = known_fail or []
- notcvgd = [elt for elt in results if not elt[1].converged]
- notcvgd = [elt for elt in notcvgd if elt[-1]['ID'] not in known_fail]
- notcvged_IDS = [elt[-1]['ID'] for elt in notcvgd]
- assert_equal([len(notcvged_IDS), notcvged_IDS], [0, []])
- # The usable xtol and rtol depend on the test
- tols = {'xtol': 4 * _FLOAT_EPS, 'rtol': 4 * _FLOAT_EPS}
- tols.update(**kwargs)
- rtol = tols['rtol']
- atol = tols.get('tol', tols['xtol'])
- cvgd = [elt for elt in results if elt[1].converged]
- approx = [elt[1].root for elt in cvgd]
- correct = [elt[0] for elt in cvgd]
- notclose = [[a] + elt for a, c, elt in zip(approx, correct, cvgd) if
- not isclose(a, c, rtol=rtol, atol=atol)
- and elt[-1]['ID'] not in known_fail]
- # Evaluate the function and see if is 0 at the purported root
- fvs = [tc['f'](aroot, *(tc['args'])) for aroot, c, fullout, tc in notclose]
- notclose = [[fv] + elt for fv, elt in zip(fvs, notclose) if fv != 0]
- assert_equal([notclose, len(notclose)], [[], 0])
- def run_collection(self, collection, method, name, smoothness=None,
- known_fail=None,
- xtol=4 * _FLOAT_EPS, rtol=4 * _FLOAT_EPS,
- **kwargs):
- r"""Run a collection of tests using the specified method.
- The name is used to determine some optional arguments."""
- tests = get_tests(collection, smoothness=smoothness)
- self.run_tests(tests, method, name, xtol=xtol, rtol=rtol,
- known_fail=known_fail, **kwargs)
- def test_bisect(self):
- self.run_check(zeros.bisect, 'bisect')
- self.run_check_lru_cached(zeros.bisect, 'bisect')
- self.run_check_by_name('bisect')
- self.run_collection('aps', zeros.bisect, 'bisect', smoothness=1)
- def test_ridder(self):
- self.run_check(zeros.ridder, 'ridder')
- self.run_check_lru_cached(zeros.ridder, 'ridder')
- self.run_check_by_name('ridder')
- self.run_collection('aps', zeros.ridder, 'ridder', smoothness=1)
- def test_brentq(self):
- self.run_check(zeros.brentq, 'brentq')
- self.run_check_lru_cached(zeros.brentq, 'brentq')
- self.run_check_by_name('brentq')
- # Brentq/h needs a lower tolerance to be specified
- self.run_collection('aps', zeros.brentq, 'brentq', smoothness=1,
- xtol=1e-14, rtol=1e-14)
- def test_brenth(self):
- self.run_check(zeros.brenth, 'brenth')
- self.run_check_lru_cached(zeros.brenth, 'brenth')
- self.run_check_by_name('brenth')
- self.run_collection('aps', zeros.brenth, 'brenth', smoothness=1,
- xtol=1e-14, rtol=1e-14)
- def test_toms748(self):
- self.run_check(zeros.toms748, 'toms748')
- self.run_check_lru_cached(zeros.toms748, 'toms748')
- self.run_check_by_name('toms748')
- self.run_collection('aps', zeros.toms748, 'toms748', smoothness=1)
- def test_newton_collections(self):
- known_fail = ['aps.13.00']
- known_fail += ['aps.12.05', 'aps.12.17'] # fails under Windows Py27
- for collection in ['aps', 'complex']:
- self.run_collection(collection, zeros.newton, 'newton',
- smoothness=2, known_fail=known_fail)
- def test_halley_collections(self):
- known_fail = ['aps.12.06', 'aps.12.07', 'aps.12.08', 'aps.12.09',
- 'aps.12.10', 'aps.12.11', 'aps.12.12', 'aps.12.13',
- 'aps.12.14', 'aps.12.15', 'aps.12.16', 'aps.12.17',
- 'aps.12.18', 'aps.13.00']
- for collection in ['aps', 'complex']:
- self.run_collection(collection, zeros.newton, 'halley',
- smoothness=2, known_fail=known_fail)
- @staticmethod
- def f1(x):
- return x**2 - 2*x - 1 # == (x-1)**2 - 2
- @staticmethod
- def f1_1(x):
- return 2*x - 2
- @staticmethod
- def f1_2(x):
- return 2.0 + 0*x
- @staticmethod
- def f2(x):
- return exp(x) - cos(x)
- @staticmethod
- def f2_1(x):
- return exp(x) + sin(x)
- @staticmethod
- def f2_2(x):
- return exp(x) + cos(x)
- def test_newton(self):
- for f, f_1, f_2 in [(self.f1, self.f1_1, self.f1_2),
- (self.f2, self.f2_1, self.f2_2)]:
- x = zeros.newton(f, 3, tol=1e-6)
- assert_allclose(f(x), 0, atol=1e-6)
- x = zeros.newton(f, 3, x1=5, tol=1e-6) # secant, x0 and x1
- assert_allclose(f(x), 0, atol=1e-6)
- x = zeros.newton(f, 3, fprime=f_1, tol=1e-6) # newton
- assert_allclose(f(x), 0, atol=1e-6)
- x = zeros.newton(f, 3, fprime=f_1, fprime2=f_2, tol=1e-6) # halley
- assert_allclose(f(x), 0, atol=1e-6)
- def test_newton_by_name(self):
- r"""Invoke newton through root_scalar()"""
- for f, f_1, f_2 in [(f1, f1_1, f1_2), (f2, f2_1, f2_2)]:
- r = root_scalar(f, method='newton', x0=3, fprime=f_1, xtol=1e-6)
- assert_allclose(f(r.root), 0, atol=1e-6)
- def test_secant_by_name(self):
- r"""Invoke secant through root_scalar()"""
- for f, f_1, f_2 in [(f1, f1_1, f1_2), (f2, f2_1, f2_2)]:
- r = root_scalar(f, method='secant', x0=3, x1=2, xtol=1e-6)
- assert_allclose(f(r.root), 0, atol=1e-6)
- r = root_scalar(f, method='secant', x0=3, x1=5, xtol=1e-6)
- assert_allclose(f(r.root), 0, atol=1e-6)
- def test_halley_by_name(self):
- r"""Invoke halley through root_scalar()"""
- for f, f_1, f_2 in [(f1, f1_1, f1_2), (f2, f2_1, f2_2)]:
- r = root_scalar(f, method='halley', x0=3,
- fprime=f_1, fprime2=f_2, xtol=1e-6)
- assert_allclose(f(r.root), 0, atol=1e-6)
- def test_root_scalar_fail(self):
- with pytest.raises(ValueError):
- root_scalar(f1, method='secant', x0=3, xtol=1e-6) # no x1
- with pytest.raises(ValueError):
- root_scalar(f1, method='newton', x0=3, xtol=1e-6) # no fprime
- with pytest.raises(ValueError):
- root_scalar(f1, method='halley', fprime=f1_1, x0=3, xtol=1e-6) # no fprime2
- with pytest.raises(ValueError):
- root_scalar(f1, method='halley', fprime2=f1_2, x0=3, xtol=1e-6) # no fprime
- def test_array_newton(self):
- """test newton with array"""
- def f1(x, *a):
- b = a[0] + x * a[3]
- return a[1] - a[2] * (np.exp(b / a[5]) - 1.0) - b / a[4] - x
- def f1_1(x, *a):
- b = a[3] / a[5]
- return -a[2] * np.exp(a[0] / a[5] + x * b) * b - a[3] / a[4] - 1
- def f1_2(x, *a):
- b = a[3] / a[5]
- return -a[2] * np.exp(a[0] / a[5] + x * b) * b**2
- a0 = np.array([
- 5.32725221, 5.48673747, 5.49539973,
- 5.36387202, 4.80237316, 1.43764452,
- 5.23063958, 5.46094772, 5.50512718,
- 5.42046290
- ])
- a1 = (np.sin(range(10)) + 1.0) * 7.0
- args = (a0, a1, 1e-09, 0.004, 10, 0.27456)
- x0 = [7.0] * 10
- x = zeros.newton(f1, x0, f1_1, args)
- x_expected = (
- 6.17264965, 11.7702805, 12.2219954,
- 7.11017681, 1.18151293, 0.143707955,
- 4.31928228, 10.5419107, 12.7552490,
- 8.91225749
- )
- assert_allclose(x, x_expected)
- # test halley's
- x = zeros.newton(f1, x0, f1_1, args, fprime2=f1_2)
- assert_allclose(x, x_expected)
- # test secant
- x = zeros.newton(f1, x0, args=args)
- assert_allclose(x, x_expected)
- def test_array_newton_complex(self):
- def f(x):
- return x + 1+1j
- def fprime(x):
- return 1.0
- t = np.full(4, 1j)
- x = zeros.newton(f, t, fprime=fprime)
- assert_allclose(f(x), 0.)
- # should work even if x0 is not complex
- t = np.ones(4)
- x = zeros.newton(f, t, fprime=fprime)
- assert_allclose(f(x), 0.)
- x = zeros.newton(f, t)
- assert_allclose(f(x), 0.)
- def test_array_secant_active_zero_der(self):
- """test secant doesn't continue to iterate zero derivatives"""
- x = zeros.newton(lambda x, *a: x*x - a[0], x0=[4.123, 5],
- args=[np.array([17, 25])])
- assert_allclose(x, (4.123105625617661, 5.0))
- def test_array_newton_integers(self):
- # test secant with float
- x = zeros.newton(lambda y, z: z - y ** 2, [4.0] * 2,
- args=([15.0, 17.0],))
- assert_allclose(x, (3.872983346207417, 4.123105625617661))
- # test integer becomes float
- x = zeros.newton(lambda y, z: z - y ** 2, [4] * 2, args=([15, 17],))
- assert_allclose(x, (3.872983346207417, 4.123105625617661))
- def test_array_newton_zero_der_failures(self):
- # test derivative zero warning
- assert_warns(RuntimeWarning, zeros.newton,
- lambda y: y**2 - 2, [0., 0.], lambda y: 2 * y)
- # test failures and zero_der
- with pytest.warns(RuntimeWarning):
- results = zeros.newton(lambda y: y**2 - 2, [0., 0.],
- lambda y: 2*y, full_output=True)
- assert_allclose(results.root, 0)
- assert results.zero_der.all()
- assert not results.converged.any()
- def test_newton_combined(self):
- f1 = lambda x: x**2 - 2*x - 1
- f1_1 = lambda x: 2*x - 2
- f1_2 = lambda x: 2.0 + 0*x
- def f1_and_p_and_pp(x):
- return x**2 - 2*x-1, 2*x-2, 2.0
- sol0 = root_scalar(f1, method='newton', x0=3, fprime=f1_1)
- sol = root_scalar(f1_and_p_and_pp, method='newton', x0=3, fprime=True)
- assert_allclose(sol0.root, sol.root, atol=1e-8)
- assert_equal(2*sol.function_calls, sol0.function_calls)
- sol0 = root_scalar(f1, method='halley', x0=3, fprime=f1_1, fprime2=f1_2)
- sol = root_scalar(f1_and_p_and_pp, method='halley', x0=3, fprime2=True)
- assert_allclose(sol0.root, sol.root, atol=1e-8)
- assert_equal(3*sol.function_calls, sol0.function_calls)
- def test_newton_full_output(self):
- # Test the full_output capability, both when converging and not.
- # Use simple polynomials, to avoid hitting platform dependencies
- # (e.g., exp & trig) in number of iterations
- x0 = 3
- expected_counts = [(6, 7), (5, 10), (3, 9)]
- for derivs in range(3):
- kwargs = {'tol': 1e-6, 'full_output': True, }
- for k, v in [['fprime', self.f1_1], ['fprime2', self.f1_2]][:derivs]:
- kwargs[k] = v
- x, r = zeros.newton(self.f1, x0, disp=False, **kwargs)
- assert_(r.converged)
- assert_equal(x, r.root)
- assert_equal((r.iterations, r.function_calls), expected_counts[derivs])
- if derivs == 0:
- assert r.function_calls <= r.iterations + 1
- else:
- assert_equal(r.function_calls, (derivs + 1) * r.iterations)
- # Now repeat, allowing one fewer iteration to force convergence failure
- iters = r.iterations - 1
- x, r = zeros.newton(self.f1, x0, maxiter=iters, disp=False, **kwargs)
- assert_(not r.converged)
- assert_equal(x, r.root)
- assert_equal(r.iterations, iters)
- if derivs == 1:
- # Check that the correct Exception is raised and
- # validate the start of the message.
- with pytest.raises(
- RuntimeError,
- match='Failed to converge after %d iterations, value is .*' % (iters)):
- x, r = zeros.newton(self.f1, x0, maxiter=iters, disp=True, **kwargs)
- def test_deriv_zero_warning(self):
- func = lambda x: x**2 - 2.0
- dfunc = lambda x: 2*x
- assert_warns(RuntimeWarning, zeros.newton, func, 0.0, dfunc, disp=False)
- with pytest.raises(RuntimeError, match='Derivative was zero'):
- zeros.newton(func, 0.0, dfunc)
- def test_newton_does_not_modify_x0(self):
- # https://github.com/scipy/scipy/issues/9964
- x0 = np.array([0.1, 3])
- x0_copy = x0.copy() # Copy to test for equality.
- newton(np.sin, x0, np.cos)
- assert_array_equal(x0, x0_copy)
- def test_maxiter_int_check(self):
- for method in [zeros.bisect, zeros.newton, zeros.ridder, zeros.brentq,
- zeros.brenth, zeros.toms748]:
- with pytest.raises(TypeError,
- match="'float' object cannot be interpreted as an integer"):
- method(f1, 0.0, 1.0, maxiter=72.45)
- def test_gh_5555():
- root = 0.1
- def f(x):
- return x - root
- methods = [zeros.bisect, zeros.ridder]
- xtol = rtol = TOL
- for method in methods:
- res = method(f, -1e8, 1e7, xtol=xtol, rtol=rtol)
- assert_allclose(root, res, atol=xtol, rtol=rtol,
- err_msg='method %s' % method.__name__)
- def test_gh_5557():
- # Show that without the changes in 5557 brentq and brenth might
- # only achieve a tolerance of 2*(xtol + rtol*|res|).
- # f linearly interpolates (0, -0.1), (0.5, -0.1), and (1,
- # 0.4). The important parts are that |f(0)| < |f(1)| (so that
- # brent takes 0 as the initial guess), |f(0)| < atol (so that
- # brent accepts 0 as the root), and that the exact root of f lies
- # more than atol away from 0 (so that brent doesn't achieve the
- # desired tolerance).
- def f(x):
- if x < 0.5:
- return -0.1
- else:
- return x - 0.6
- atol = 0.51
- rtol = 4 * _FLOAT_EPS
- methods = [zeros.brentq, zeros.brenth]
- for method in methods:
- res = method(f, 0, 1, xtol=atol, rtol=rtol)
- assert_allclose(0.6, res, atol=atol, rtol=rtol)
- def test_brent_underflow_in_root_bracketing():
- # Tetsing if an interval [a,b] brackets a zero of a function
- # by checking f(a)*f(b) < 0 is not reliable when the product
- # underflows/overflows. (reported in issue# 13737)
- underflow_scenario = (-450.0, -350.0, -400.0)
- overflow_scenario = (350.0, 450.0, 400.0)
- for a, b, root in [underflow_scenario, overflow_scenario]:
- c = np.exp(root)
- for method in [zeros.brenth, zeros.brentq]:
- res = method(lambda x: np.exp(x)-c, a, b)
- assert_allclose(root, res)
- class TestRootResults:
- def test_repr(self):
- r = zeros.RootResults(root=1.0,
- iterations=44,
- function_calls=46,
- flag=0)
- expected_repr = (" converged: True\n flag: 'converged'"
- "\n function_calls: 46\n iterations: 44\n"
- " root: 1.0")
- assert_equal(repr(r), expected_repr)
- def test_complex_halley():
- """Test Halley's works with complex roots"""
- def f(x, *a):
- return a[0] * x**2 + a[1] * x + a[2]
- def f_1(x, *a):
- return 2 * a[0] * x + a[1]
- def f_2(x, *a):
- retval = 2 * a[0]
- try:
- size = len(x)
- except TypeError:
- return retval
- else:
- return [retval] * size
- z = complex(1.0, 2.0)
- coeffs = (2.0, 3.0, 4.0)
- y = zeros.newton(f, z, args=coeffs, fprime=f_1, fprime2=f_2, tol=1e-6)
- # (-0.75000000000000078+1.1989578808281789j)
- assert_allclose(f(y, *coeffs), 0, atol=1e-6)
- z = [z] * 10
- coeffs = (2.0, 3.0, 4.0)
- y = zeros.newton(f, z, args=coeffs, fprime=f_1, fprime2=f_2, tol=1e-6)
- assert_allclose(f(y, *coeffs), 0, atol=1e-6)
- def test_zero_der_nz_dp():
- """Test secant method with a non-zero dp, but an infinite newton step"""
- # pick a symmetrical functions and choose a point on the side that with dx
- # makes a secant that is a flat line with zero slope, EG: f = (x - 100)**2,
- # which has a root at x = 100 and is symmetrical around the line x = 100
- # we have to pick a really big number so that it is consistently true
- # now find a point on each side so that the secant has a zero slope
- dx = np.finfo(float).eps ** 0.33
- # 100 - p0 = p1 - 100 = p0 * (1 + dx) + dx - 100
- # -> 200 = p0 * (2 + dx) + dx
- p0 = (200.0 - dx) / (2.0 + dx)
- with suppress_warnings() as sup:
- sup.filter(RuntimeWarning, "RMS of")
- x = zeros.newton(lambda y: (y - 100.0)**2, x0=[p0] * 10)
- assert_allclose(x, [100] * 10)
- # test scalar cases too
- p0 = (2.0 - 1e-4) / (2.0 + 1e-4)
- with suppress_warnings() as sup:
- sup.filter(RuntimeWarning, "Tolerance of")
- x = zeros.newton(lambda y: (y - 1.0) ** 2, x0=p0, disp=False)
- assert_allclose(x, 1)
- with pytest.raises(RuntimeError, match='Tolerance of'):
- x = zeros.newton(lambda y: (y - 1.0) ** 2, x0=p0, disp=True)
- p0 = (-2.0 + 1e-4) / (2.0 + 1e-4)
- with suppress_warnings() as sup:
- sup.filter(RuntimeWarning, "Tolerance of")
- x = zeros.newton(lambda y: (y + 1.0) ** 2, x0=p0, disp=False)
- assert_allclose(x, -1)
- with pytest.raises(RuntimeError, match='Tolerance of'):
- x = zeros.newton(lambda y: (y + 1.0) ** 2, x0=p0, disp=True)
- def test_array_newton_failures():
- """Test that array newton fails as expected"""
- # p = 0.68 # [MPa]
- # dp = -0.068 * 1e6 # [Pa]
- # T = 323 # [K]
- diameter = 0.10 # [m]
- # L = 100 # [m]
- roughness = 0.00015 # [m]
- rho = 988.1 # [kg/m**3]
- mu = 5.4790e-04 # [Pa*s]
- u = 2.488 # [m/s]
- reynolds_number = rho * u * diameter / mu # Reynolds number
- def colebrook_eqn(darcy_friction, re, dia):
- return (1 / np.sqrt(darcy_friction) +
- 2 * np.log10(roughness / 3.7 / dia +
- 2.51 / re / np.sqrt(darcy_friction)))
- # only some failures
- with pytest.warns(RuntimeWarning):
- result = zeros.newton(
- colebrook_eqn, x0=[0.01, 0.2, 0.02223, 0.3], maxiter=2,
- args=[reynolds_number, diameter], full_output=True
- )
- assert not result.converged.all()
- # they all fail
- with pytest.raises(RuntimeError):
- result = zeros.newton(
- colebrook_eqn, x0=[0.01] * 2, maxiter=2,
- args=[reynolds_number, diameter], full_output=True
- )
- # this test should **not** raise a RuntimeWarning
- def test_gh8904_zeroder_at_root_fails():
- """Test that Newton or Halley don't warn if zero derivative at root"""
- # a function that has a zero derivative at it's root
- def f_zeroder_root(x):
- return x**3 - x**2
- # should work with secant
- r = zeros.newton(f_zeroder_root, x0=0)
- assert_allclose(r, 0, atol=zeros._xtol, rtol=zeros._rtol)
- # test again with array
- r = zeros.newton(f_zeroder_root, x0=[0]*10)
- assert_allclose(r, 0, atol=zeros._xtol, rtol=zeros._rtol)
- # 1st derivative
- def fder(x):
- return 3 * x**2 - 2 * x
- # 2nd derivative
- def fder2(x):
- return 6*x - 2
- # should work with newton and halley
- r = zeros.newton(f_zeroder_root, x0=0, fprime=fder)
- assert_allclose(r, 0, atol=zeros._xtol, rtol=zeros._rtol)
- r = zeros.newton(f_zeroder_root, x0=0, fprime=fder,
- fprime2=fder2)
- assert_allclose(r, 0, atol=zeros._xtol, rtol=zeros._rtol)
- # test again with array
- r = zeros.newton(f_zeroder_root, x0=[0]*10, fprime=fder)
- assert_allclose(r, 0, atol=zeros._xtol, rtol=zeros._rtol)
- r = zeros.newton(f_zeroder_root, x0=[0]*10, fprime=fder,
- fprime2=fder2)
- assert_allclose(r, 0, atol=zeros._xtol, rtol=zeros._rtol)
- # also test that if a root is found we do not raise RuntimeWarning even if
- # the derivative is zero, EG: at x = 0.5, then fval = -0.125 and
- # fder = -0.25 so the next guess is 0.5 - (-0.125/-0.5) = 0 which is the
- # root, but if the solver continued with that guess, then it will calculate
- # a zero derivative, so it should return the root w/o RuntimeWarning
- r = zeros.newton(f_zeroder_root, x0=0.5, fprime=fder)
- assert_allclose(r, 0, atol=zeros._xtol, rtol=zeros._rtol)
- # test again with array
- r = zeros.newton(f_zeroder_root, x0=[0.5]*10, fprime=fder)
- assert_allclose(r, 0, atol=zeros._xtol, rtol=zeros._rtol)
- # doesn't apply to halley
- def test_gh_8881():
- r"""Test that Halley's method realizes that the 2nd order adjustment
- is too big and drops off to the 1st order adjustment."""
- n = 9
- def f(x):
- return power(x, 1.0/n) - power(n, 1.0/n)
- def fp(x):
- return power(x, (1.0-n)/n)/n
- def fpp(x):
- return power(x, (1.0-2*n)/n) * (1.0/n) * (1.0-n)/n
- x0 = 0.1
- # The root is at x=9.
- # The function has positive slope, x0 < root.
- # Newton succeeds in 8 iterations
- rt, r = newton(f, x0, fprime=fp, full_output=True)
- assert r.converged
- # Before the Issue 8881/PR 8882, halley would send x in the wrong direction.
- # Check that it now succeeds.
- rt, r = newton(f, x0, fprime=fp, fprime2=fpp, full_output=True)
- assert r.converged
- def test_gh_9608_preserve_array_shape():
- """
- Test that shape is preserved for array inputs even if fprime or fprime2 is
- scalar
- """
- def f(x):
- return x**2
- def fp(x):
- return 2 * x
- def fpp(x):
- return 2
- x0 = np.array([-2], dtype=np.float32)
- rt, r = newton(f, x0, fprime=fp, fprime2=fpp, full_output=True)
- assert r.converged
- x0_array = np.array([-2, -3], dtype=np.float32)
- # This next invocation should fail
- with pytest.raises(IndexError):
- result = zeros.newton(
- f, x0_array, fprime=fp, fprime2=fpp, full_output=True
- )
- def fpp_array(x):
- return np.full(np.shape(x), 2, dtype=np.float32)
- result = zeros.newton(
- f, x0_array, fprime=fp, fprime2=fpp_array, full_output=True
- )
- assert result.converged.all()
- @pytest.mark.parametrize(
- "maximum_iterations,flag_expected",
- [(10, zeros.CONVERR), (100, zeros.CONVERGED)])
- def test_gh9254_flag_if_maxiter_exceeded(maximum_iterations, flag_expected):
- """
- Test that if the maximum iterations is exceeded that the flag is not
- converged.
- """
- result = zeros.brentq(
- lambda x: ((1.2*x - 2.3)*x + 3.4)*x - 4.5,
- -30, 30, (), 1e-6, 1e-6, maximum_iterations,
- full_output=True, disp=False)
- assert result[1].flag == flag_expected
- if flag_expected == zeros.CONVERR:
- # didn't converge because exceeded maximum iterations
- assert result[1].iterations == maximum_iterations
- elif flag_expected == zeros.CONVERGED:
- # converged before maximum iterations
- assert result[1].iterations < maximum_iterations
- def test_gh9551_raise_error_if_disp_true():
- """Test that if disp is true then zero derivative raises RuntimeError"""
- def f(x):
- return x*x + 1
- def f_p(x):
- return 2*x
- assert_warns(RuntimeWarning, zeros.newton, f, 1.0, f_p, disp=False)
- with pytest.raises(
- RuntimeError,
- match=r'^Derivative was zero\. Failed to converge after \d+ iterations, value is [+-]?\d*\.\d+\.$'):
- zeros.newton(f, 1.0, f_p)
- root = zeros.newton(f, complex(10.0, 10.0), f_p)
- assert_allclose(root, complex(0.0, 1.0))
|