123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170 |
- """
- Unit tests for Krylov space trust-region subproblem solver.
- To run it in its simplest form::
- nosetests test_optimize.py
- """
- import numpy as np
- from scipy.optimize._trlib import (get_trlib_quadratic_subproblem)
- from numpy.testing import (assert_,
- assert_almost_equal,
- assert_equal, assert_array_almost_equal)
- KrylovQP = get_trlib_quadratic_subproblem(tol_rel_i=1e-8, tol_rel_b=1e-6)
- KrylovQP_disp = get_trlib_quadratic_subproblem(tol_rel_i=1e-8, tol_rel_b=1e-6, disp=True)
- class TestKrylovQuadraticSubproblem:
- def test_for_the_easy_case(self):
- # `H` is chosen such that `g` is not orthogonal to the
- # eigenvector associated with the smallest eigenvalue.
- H = np.array([[1.0, 0.0, 4.0],
- [0.0, 2.0, 0.0],
- [4.0, 0.0, 3.0]])
- g = np.array([5.0, 0.0, 4.0])
- # Trust Radius
- trust_radius = 1.0
- # Solve Subproblem
- subprob = KrylovQP(x=0,
- fun=lambda x: 0,
- jac=lambda x: g,
- hess=lambda x: None,
- hessp=lambda x, y: H.dot(y))
- p, hits_boundary = subprob.solve(trust_radius)
- assert_array_almost_equal(p, np.array([-1.0, 0.0, 0.0]))
- assert_equal(hits_boundary, True)
- # check kkt satisfaction
- assert_almost_equal(
- np.linalg.norm(H.dot(p) + subprob.lam * p + g),
- 0.0)
- # check trust region constraint
- assert_almost_equal(np.linalg.norm(p), trust_radius)
- trust_radius = 0.5
- p, hits_boundary = subprob.solve(trust_radius)
- assert_array_almost_equal(p,
- np.array([-0.46125446, 0., -0.19298788]))
- assert_equal(hits_boundary, True)
- # check kkt satisfaction
- assert_almost_equal(
- np.linalg.norm(H.dot(p) + subprob.lam * p + g),
- 0.0)
- # check trust region constraint
- assert_almost_equal(np.linalg.norm(p), trust_radius)
- def test_for_the_hard_case(self):
- # `H` is chosen such that `g` is orthogonal to the
- # eigenvector associated with the smallest eigenvalue.
- H = np.array([[1.0, 0.0, 4.0],
- [0.0, 2.0, 0.0],
- [4.0, 0.0, 3.0]])
- g = np.array([0.0, 2.0, 0.0])
- # Trust Radius
- trust_radius = 1.0
- # Solve Subproblem
- subprob = KrylovQP(x=0,
- fun=lambda x: 0,
- jac=lambda x: g,
- hess=lambda x: None,
- hessp=lambda x, y: H.dot(y))
- p, hits_boundary = subprob.solve(trust_radius)
- assert_array_almost_equal(p, np.array([0.0, -1.0, 0.0]))
- # check kkt satisfaction
- assert_almost_equal(
- np.linalg.norm(H.dot(p) + subprob.lam * p + g),
- 0.0)
- # check trust region constraint
- assert_almost_equal(np.linalg.norm(p), trust_radius)
- trust_radius = 0.5
- p, hits_boundary = subprob.solve(trust_radius)
- assert_array_almost_equal(p, np.array([0.0, -0.5, 0.0]))
- # check kkt satisfaction
- assert_almost_equal(
- np.linalg.norm(H.dot(p) + subprob.lam * p + g),
- 0.0)
- # check trust region constraint
- assert_almost_equal(np.linalg.norm(p), trust_radius)
- def test_for_interior_convergence(self):
- H = np.array([[1.812159, 0.82687265, 0.21838879, -0.52487006, 0.25436988],
- [0.82687265, 2.66380283, 0.31508988, -0.40144163, 0.08811588],
- [0.21838879, 0.31508988, 2.38020726, -0.3166346, 0.27363867],
- [-0.52487006, -0.40144163, -0.3166346, 1.61927182, -0.42140166],
- [0.25436988, 0.08811588, 0.27363867, -0.42140166, 1.33243101]])
- g = np.array([0.75798952, 0.01421945, 0.33847612, 0.83725004, -0.47909534])
- trust_radius = 1.1
- # Solve Subproblem
- subprob = KrylovQP(x=0,
- fun=lambda x: 0,
- jac=lambda x: g,
- hess=lambda x: None,
- hessp=lambda x, y: H.dot(y))
- p, hits_boundary = subprob.solve(trust_radius)
- # check kkt satisfaction
- assert_almost_equal(
- np.linalg.norm(H.dot(p) + subprob.lam * p + g),
- 0.0)
- assert_array_almost_equal(p, [-0.68585435, 0.1222621, -0.22090999,
- -0.67005053, 0.31586769])
- assert_array_almost_equal(hits_boundary, False)
- def test_for_very_close_to_zero(self):
- H = np.array([[0.88547534, 2.90692271, 0.98440885, -0.78911503, -0.28035809],
- [2.90692271, -0.04618819, 0.32867263, -0.83737945, 0.17116396],
- [0.98440885, 0.32867263, -0.87355957, -0.06521957, -1.43030957],
- [-0.78911503, -0.83737945, -0.06521957, -1.645709, -0.33887298],
- [-0.28035809, 0.17116396, -1.43030957, -0.33887298, -1.68586978]])
- g = np.array([0, 0, 0, 0, 1e-6])
- trust_radius = 1.1
- # Solve Subproblem
- subprob = KrylovQP(x=0,
- fun=lambda x: 0,
- jac=lambda x: g,
- hess=lambda x: None,
- hessp=lambda x, y: H.dot(y))
- p, hits_boundary = subprob.solve(trust_radius)
- # check kkt satisfaction
- assert_almost_equal(
- np.linalg.norm(H.dot(p) + subprob.lam * p + g),
- 0.0)
- # check trust region constraint
- assert_almost_equal(np.linalg.norm(p), trust_radius)
- assert_array_almost_equal(p, [0.06910534, -0.01432721,
- -0.65311947, -0.23815972,
- -0.84954934])
- assert_array_almost_equal(hits_boundary, True)
- def test_disp(self, capsys):
- H = -np.eye(5)
- g = np.array([0, 0, 0, 0, 1e-6])
- trust_radius = 1.1
- subprob = KrylovQP_disp(x=0,
- fun=lambda x: 0,
- jac=lambda x: g,
- hess=lambda x: None,
- hessp=lambda x, y: H.dot(y))
- p, hits_boundary = subprob.solve(trust_radius)
- out, err = capsys.readouterr()
- assert_(out.startswith(' TR Solving trust region problem'), repr(out))
|