123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352 |
- """
- Unit tests for trust-region iterative subproblem.
- To run it in its simplest form::
- nosetests test_optimize.py
- """
- import numpy as np
- from scipy.optimize._trustregion_exact import (
- estimate_smallest_singular_value,
- singular_leading_submatrix,
- IterativeSubproblem)
- from scipy.linalg import (svd, get_lapack_funcs, det, qr, norm)
- from numpy.testing import (assert_array_equal,
- assert_equal, assert_array_almost_equal)
- def random_entry(n, min_eig, max_eig, case):
- # Generate random matrix
- rand = np.random.uniform(-1, 1, (n, n))
- # QR decomposition
- Q, _, _ = qr(rand, pivoting='True')
- # Generate random eigenvalues
- eigvalues = np.random.uniform(min_eig, max_eig, n)
- eigvalues = np.sort(eigvalues)[::-1]
- # Generate matrix
- Qaux = np.multiply(eigvalues, Q)
- A = np.dot(Qaux, Q.T)
- # Generate gradient vector accordingly
- # to the case is being tested.
- if case == 'hard':
- g = np.zeros(n)
- g[:-1] = np.random.uniform(-1, 1, n-1)
- g = np.dot(Q, g)
- elif case == 'jac_equal_zero':
- g = np.zeros(n)
- else:
- g = np.random.uniform(-1, 1, n)
- return A, g
- class TestEstimateSmallestSingularValue:
- def test_for_ill_condiotioned_matrix(self):
- # Ill-conditioned triangular matrix
- C = np.array([[1, 2, 3, 4],
- [0, 0.05, 60, 7],
- [0, 0, 0.8, 9],
- [0, 0, 0, 10]])
- # Get svd decomposition
- U, s, Vt = svd(C)
- # Get smallest singular value and correspondent right singular vector.
- smin_svd = s[-1]
- zmin_svd = Vt[-1, :]
- # Estimate smallest singular value
- smin, zmin = estimate_smallest_singular_value(C)
- # Check the estimation
- assert_array_almost_equal(smin, smin_svd, decimal=8)
- assert_array_almost_equal(abs(zmin), abs(zmin_svd), decimal=8)
- class TestSingularLeadingSubmatrix:
- def test_for_already_singular_leading_submatrix(self):
- # Define test matrix A.
- # Note that the leading 2x2 submatrix is singular.
- A = np.array([[1, 2, 3],
- [2, 4, 5],
- [3, 5, 6]])
- # Get Cholesky from lapack functions
- cholesky, = get_lapack_funcs(('potrf',), (A,))
- # Compute Cholesky Decomposition
- c, k = cholesky(A, lower=False, overwrite_a=False, clean=True)
- delta, v = singular_leading_submatrix(A, c, k)
- A[k-1, k-1] += delta
- # Check if the leading submatrix is singular.
- assert_array_almost_equal(det(A[:k, :k]), 0)
- # Check if `v` fullfil the specified properties
- quadratic_term = np.dot(v, np.dot(A, v))
- assert_array_almost_equal(quadratic_term, 0)
- def test_for_simetric_indefinite_matrix(self):
- # Define test matrix A.
- # Note that the leading 5x5 submatrix is indefinite.
- A = np.asarray([[1, 2, 3, 7, 8],
- [2, 5, 5, 9, 0],
- [3, 5, 11, 1, 2],
- [7, 9, 1, 7, 5],
- [8, 0, 2, 5, 8]])
- # Get Cholesky from lapack functions
- cholesky, = get_lapack_funcs(('potrf',), (A,))
- # Compute Cholesky Decomposition
- c, k = cholesky(A, lower=False, overwrite_a=False, clean=True)
- delta, v = singular_leading_submatrix(A, c, k)
- A[k-1, k-1] += delta
- # Check if the leading submatrix is singular.
- assert_array_almost_equal(det(A[:k, :k]), 0)
- # Check if `v` fullfil the specified properties
- quadratic_term = np.dot(v, np.dot(A, v))
- assert_array_almost_equal(quadratic_term, 0)
- def test_for_first_element_equal_to_zero(self):
- # Define test matrix A.
- # Note that the leading 2x2 submatrix is singular.
- A = np.array([[0, 3, 11],
- [3, 12, 5],
- [11, 5, 6]])
- # Get Cholesky from lapack functions
- cholesky, = get_lapack_funcs(('potrf',), (A,))
- # Compute Cholesky Decomposition
- c, k = cholesky(A, lower=False, overwrite_a=False, clean=True)
- delta, v = singular_leading_submatrix(A, c, k)
- A[k-1, k-1] += delta
- # Check if the leading submatrix is singular
- assert_array_almost_equal(det(A[:k, :k]), 0)
- # Check if `v` fullfil the specified properties
- quadratic_term = np.dot(v, np.dot(A, v))
- assert_array_almost_equal(quadratic_term, 0)
- class TestIterativeSubproblem:
- def test_for_the_easy_case(self):
- # `H` is chosen such that `g` is not orthogonal to the
- # eigenvector associated with the smallest eigenvalue `s`.
- H = [[10, 2, 3, 4],
- [2, 1, 7, 1],
- [3, 7, 1, 7],
- [4, 1, 7, 2]]
- g = [1, 1, 1, 1]
- # Trust Radius
- trust_radius = 1
- # Solve Subproblem
- subprob = IterativeSubproblem(x=0,
- fun=lambda x: 0,
- jac=lambda x: np.array(g),
- hess=lambda x: np.array(H),
- k_easy=1e-10,
- k_hard=1e-10)
- p, hits_boundary = subprob.solve(trust_radius)
- assert_array_almost_equal(p, [0.00393332, -0.55260862,
- 0.67065477, -0.49480341])
- assert_array_almost_equal(hits_boundary, True)
- def test_for_the_hard_case(self):
- # `H` is chosen such that `g` is orthogonal to the
- # eigenvector associated with the smallest eigenvalue `s`.
- H = [[10, 2, 3, 4],
- [2, 1, 7, 1],
- [3, 7, 1, 7],
- [4, 1, 7, 2]]
- g = [6.4852641521327437, 1, 1, 1]
- s = -8.2151519874416614
- # Trust Radius
- trust_radius = 1
- # Solve Subproblem
- subprob = IterativeSubproblem(x=0,
- fun=lambda x: 0,
- jac=lambda x: np.array(g),
- hess=lambda x: np.array(H),
- k_easy=1e-10,
- k_hard=1e-10)
- p, hits_boundary = subprob.solve(trust_radius)
- assert_array_almost_equal(-s, subprob.lambda_current)
- def test_for_interior_convergence(self):
- H = [[1.812159, 0.82687265, 0.21838879, -0.52487006, 0.25436988],
- [0.82687265, 2.66380283, 0.31508988, -0.40144163, 0.08811588],
- [0.21838879, 0.31508988, 2.38020726, -0.3166346, 0.27363867],
- [-0.52487006, -0.40144163, -0.3166346, 1.61927182, -0.42140166],
- [0.25436988, 0.08811588, 0.27363867, -0.42140166, 1.33243101]]
- g = [0.75798952, 0.01421945, 0.33847612, 0.83725004, -0.47909534]
- # Solve Subproblem
- subprob = IterativeSubproblem(x=0,
- fun=lambda x: 0,
- jac=lambda x: np.array(g),
- hess=lambda x: np.array(H))
- p, hits_boundary = subprob.solve(1.1)
- assert_array_almost_equal(p, [-0.68585435, 0.1222621, -0.22090999,
- -0.67005053, 0.31586769])
- assert_array_almost_equal(hits_boundary, False)
- assert_array_almost_equal(subprob.lambda_current, 0)
- assert_array_almost_equal(subprob.niter, 1)
- def test_for_jac_equal_zero(self):
- H = [[0.88547534, 2.90692271, 0.98440885, -0.78911503, -0.28035809],
- [2.90692271, -0.04618819, 0.32867263, -0.83737945, 0.17116396],
- [0.98440885, 0.32867263, -0.87355957, -0.06521957, -1.43030957],
- [-0.78911503, -0.83737945, -0.06521957, -1.645709, -0.33887298],
- [-0.28035809, 0.17116396, -1.43030957, -0.33887298, -1.68586978]]
- g = [0, 0, 0, 0, 0]
- # Solve Subproblem
- subprob = IterativeSubproblem(x=0,
- fun=lambda x: 0,
- jac=lambda x: np.array(g),
- hess=lambda x: np.array(H),
- k_easy=1e-10,
- k_hard=1e-10)
- p, hits_boundary = subprob.solve(1.1)
- assert_array_almost_equal(p, [0.06910534, -0.01432721,
- -0.65311947, -0.23815972,
- -0.84954934])
- assert_array_almost_equal(hits_boundary, True)
- def test_for_jac_very_close_to_zero(self):
- H = [[0.88547534, 2.90692271, 0.98440885, -0.78911503, -0.28035809],
- [2.90692271, -0.04618819, 0.32867263, -0.83737945, 0.17116396],
- [0.98440885, 0.32867263, -0.87355957, -0.06521957, -1.43030957],
- [-0.78911503, -0.83737945, -0.06521957, -1.645709, -0.33887298],
- [-0.28035809, 0.17116396, -1.43030957, -0.33887298, -1.68586978]]
- g = [0, 0, 0, 0, 1e-15]
- # Solve Subproblem
- subprob = IterativeSubproblem(x=0,
- fun=lambda x: 0,
- jac=lambda x: np.array(g),
- hess=lambda x: np.array(H),
- k_easy=1e-10,
- k_hard=1e-10)
- p, hits_boundary = subprob.solve(1.1)
- assert_array_almost_equal(p, [0.06910534, -0.01432721,
- -0.65311947, -0.23815972,
- -0.84954934])
- assert_array_almost_equal(hits_boundary, True)
- def test_for_random_entries(self):
- # Seed
- np.random.seed(1)
- # Dimension
- n = 5
- for case in ('easy', 'hard', 'jac_equal_zero'):
- eig_limits = [(-20, -15),
- (-10, -5),
- (-10, 0),
- (-5, 5),
- (-10, 10),
- (0, 10),
- (5, 10),
- (15, 20)]
- for min_eig, max_eig in eig_limits:
- # Generate random symmetric matrix H with
- # eigenvalues between min_eig and max_eig.
- H, g = random_entry(n, min_eig, max_eig, case)
- # Trust radius
- trust_radius_list = [0.1, 0.3, 0.6, 0.8, 1, 1.2, 3.3, 5.5, 10]
- for trust_radius in trust_radius_list:
- # Solve subproblem with very high accuracy
- subprob_ac = IterativeSubproblem(0,
- lambda x: 0,
- lambda x: g,
- lambda x: H,
- k_easy=1e-10,
- k_hard=1e-10)
- p_ac, hits_boundary_ac = subprob_ac.solve(trust_radius)
- # Compute objective function value
- J_ac = 1/2*np.dot(p_ac, np.dot(H, p_ac))+np.dot(g, p_ac)
- stop_criteria = [(0.1, 2),
- (0.5, 1.1),
- (0.9, 1.01)]
- for k_opt, k_trf in stop_criteria:
- # k_easy and k_hard computed in function
- # of k_opt and k_trf accordingly to
- # Conn, A. R., Gould, N. I., & Toint, P. L. (2000).
- # "Trust region methods". Siam. p. 197.
- k_easy = min(k_trf-1,
- 1-np.sqrt(k_opt))
- k_hard = 1-k_opt
- # Solve subproblem
- subprob = IterativeSubproblem(0,
- lambda x: 0,
- lambda x: g,
- lambda x: H,
- k_easy=k_easy,
- k_hard=k_hard)
- p, hits_boundary = subprob.solve(trust_radius)
- # Compute objective function value
- J = 1/2*np.dot(p, np.dot(H, p))+np.dot(g, p)
- # Check if it respect k_trf
- if hits_boundary:
- assert_array_equal(np.abs(norm(p)-trust_radius) <=
- (k_trf-1)*trust_radius, True)
- else:
- assert_equal(norm(p) <= trust_radius, True)
- # Check if it respect k_opt
- assert_equal(J <= k_opt*J_ac, True)
|