123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297 |
- from numpy.testing import assert_, assert_allclose, assert_equal
- from pytest import raises as assert_raises
- import numpy as np
- from scipy.optimize._lsq.common import (
- step_size_to_bound, find_active_constraints, make_strictly_feasible,
- CL_scaling_vector, intersect_trust_region, build_quadratic_1d,
- minimize_quadratic_1d, evaluate_quadratic, reflective_transformation,
- left_multiplied_operator, right_multiplied_operator)
- class TestBounds:
- def test_step_size_to_bounds(self):
- lb = np.array([-1.0, 2.5, 10.0])
- ub = np.array([1.0, 5.0, 100.0])
- x = np.array([0.0, 2.5, 12.0])
- s = np.array([0.1, 0.0, 0.0])
- step, hits = step_size_to_bound(x, s, lb, ub)
- assert_equal(step, 10)
- assert_equal(hits, [1, 0, 0])
- s = np.array([0.01, 0.05, -1.0])
- step, hits = step_size_to_bound(x, s, lb, ub)
- assert_equal(step, 2)
- assert_equal(hits, [0, 0, -1])
- s = np.array([10.0, -0.0001, 100.0])
- step, hits = step_size_to_bound(x, s, lb, ub)
- assert_equal(step, np.array(-0))
- assert_equal(hits, [0, -1, 0])
- s = np.array([1.0, 0.5, -2.0])
- step, hits = step_size_to_bound(x, s, lb, ub)
- assert_equal(step, 1.0)
- assert_equal(hits, [1, 0, -1])
- s = np.zeros(3)
- step, hits = step_size_to_bound(x, s, lb, ub)
- assert_equal(step, np.inf)
- assert_equal(hits, [0, 0, 0])
- def test_find_active_constraints(self):
- lb = np.array([0.0, -10.0, 1.0])
- ub = np.array([1.0, 0.0, 100.0])
- x = np.array([0.5, -5.0, 2.0])
- active = find_active_constraints(x, lb, ub)
- assert_equal(active, [0, 0, 0])
- x = np.array([0.0, 0.0, 10.0])
- active = find_active_constraints(x, lb, ub)
- assert_equal(active, [-1, 1, 0])
- active = find_active_constraints(x, lb, ub, rtol=0)
- assert_equal(active, [-1, 1, 0])
- x = np.array([1e-9, -1e-8, 100 - 1e-9])
- active = find_active_constraints(x, lb, ub)
- assert_equal(active, [0, 0, 1])
- active = find_active_constraints(x, lb, ub, rtol=1.5e-9)
- assert_equal(active, [-1, 0, 1])
- lb = np.array([1.0, -np.inf, -np.inf])
- ub = np.array([np.inf, 10.0, np.inf])
- x = np.ones(3)
- active = find_active_constraints(x, lb, ub)
- assert_equal(active, [-1, 0, 0])
- # Handles out-of-bound cases.
- x = np.array([0.0, 11.0, 0.0])
- active = find_active_constraints(x, lb, ub)
- assert_equal(active, [-1, 1, 0])
- active = find_active_constraints(x, lb, ub, rtol=0)
- assert_equal(active, [-1, 1, 0])
- def test_make_strictly_feasible(self):
- lb = np.array([-0.5, -0.8, 2.0])
- ub = np.array([0.8, 1.0, 3.0])
- x = np.array([-0.5, 0.0, 2 + 1e-10])
- x_new = make_strictly_feasible(x, lb, ub, rstep=0)
- assert_(x_new[0] > -0.5)
- assert_equal(x_new[1:], x[1:])
- x_new = make_strictly_feasible(x, lb, ub, rstep=1e-4)
- assert_equal(x_new, [-0.5 + 1e-4, 0.0, 2 * (1 + 1e-4)])
- x = np.array([-0.5, -1, 3.1])
- x_new = make_strictly_feasible(x, lb, ub)
- assert_(np.all((x_new >= lb) & (x_new <= ub)))
- x_new = make_strictly_feasible(x, lb, ub, rstep=0)
- assert_(np.all((x_new >= lb) & (x_new <= ub)))
- lb = np.array([-1, 100.0])
- ub = np.array([1, 100.0 + 1e-10])
- x = np.array([0, 100.0])
- x_new = make_strictly_feasible(x, lb, ub, rstep=1e-8)
- assert_equal(x_new, [0, 100.0 + 0.5e-10])
- def test_scaling_vector(self):
- lb = np.array([-np.inf, -5.0, 1.0, -np.inf])
- ub = np.array([1.0, np.inf, 10.0, np.inf])
- x = np.array([0.5, 2.0, 5.0, 0.0])
- g = np.array([1.0, 0.1, -10.0, 0.0])
- v, dv = CL_scaling_vector(x, g, lb, ub)
- assert_equal(v, [1.0, 7.0, 5.0, 1.0])
- assert_equal(dv, [0.0, 1.0, -1.0, 0.0])
- class TestQuadraticFunction:
- def setup_method(self):
- self.J = np.array([
- [0.1, 0.2],
- [-1.0, 1.0],
- [0.5, 0.2]])
- self.g = np.array([0.8, -2.0])
- self.diag = np.array([1.0, 2.0])
- def test_build_quadratic_1d(self):
- s = np.zeros(2)
- a, b = build_quadratic_1d(self.J, self.g, s)
- assert_equal(a, 0)
- assert_equal(b, 0)
- a, b = build_quadratic_1d(self.J, self.g, s, diag=self.diag)
- assert_equal(a, 0)
- assert_equal(b, 0)
- s = np.array([1.0, -1.0])
- a, b = build_quadratic_1d(self.J, self.g, s)
- assert_equal(a, 2.05)
- assert_equal(b, 2.8)
- a, b = build_quadratic_1d(self.J, self.g, s, diag=self.diag)
- assert_equal(a, 3.55)
- assert_equal(b, 2.8)
- s0 = np.array([0.5, 0.5])
- a, b, c = build_quadratic_1d(self.J, self.g, s, diag=self.diag, s0=s0)
- assert_equal(a, 3.55)
- assert_allclose(b, 2.39)
- assert_allclose(c, -0.1525)
- def test_minimize_quadratic_1d(self):
- a = 5
- b = -1
- t, y = minimize_quadratic_1d(a, b, 1, 2)
- assert_equal(t, 1)
- assert_allclose(y, a * t**2 + b * t, rtol=1e-15)
- t, y = minimize_quadratic_1d(a, b, -2, -1)
- assert_equal(t, -1)
- assert_allclose(y, a * t**2 + b * t, rtol=1e-15)
- t, y = minimize_quadratic_1d(a, b, -1, 1)
- assert_equal(t, 0.1)
- assert_allclose(y, a * t**2 + b * t, rtol=1e-15)
- c = 10
- t, y = minimize_quadratic_1d(a, b, -1, 1, c=c)
- assert_equal(t, 0.1)
- assert_allclose(y, a * t**2 + b * t + c, rtol=1e-15)
- t, y = minimize_quadratic_1d(a, b, -np.inf, np.inf, c=c)
- assert_equal(t, 0.1)
- assert_allclose(y, a * t ** 2 + b * t + c, rtol=1e-15)
- t, y = minimize_quadratic_1d(a, b, 0, np.inf, c=c)
- assert_equal(t, 0.1)
- assert_allclose(y, a * t ** 2 + b * t + c, rtol=1e-15)
- t, y = minimize_quadratic_1d(a, b, -np.inf, 0, c=c)
- assert_equal(t, 0)
- assert_allclose(y, a * t ** 2 + b * t + c, rtol=1e-15)
- a = -1
- b = 0.2
- t, y = minimize_quadratic_1d(a, b, -np.inf, np.inf)
- assert_equal(y, -np.inf)
- t, y = minimize_quadratic_1d(a, b, 0, np.inf)
- assert_equal(t, np.inf)
- assert_equal(y, -np.inf)
- t, y = minimize_quadratic_1d(a, b, -np.inf, 0)
- assert_equal(t, -np.inf)
- assert_equal(y, -np.inf)
- def test_evaluate_quadratic(self):
- s = np.array([1.0, -1.0])
- value = evaluate_quadratic(self.J, self.g, s)
- assert_equal(value, 4.85)
- value = evaluate_quadratic(self.J, self.g, s, diag=self.diag)
- assert_equal(value, 6.35)
- s = np.array([[1.0, -1.0],
- [1.0, 1.0],
- [0.0, 0.0]])
- values = evaluate_quadratic(self.J, self.g, s)
- assert_allclose(values, [4.85, -0.91, 0.0])
- values = evaluate_quadratic(self.J, self.g, s, diag=self.diag)
- assert_allclose(values, [6.35, 0.59, 0.0])
- class TestTrustRegion:
- def test_intersect(self):
- Delta = 1.0
- x = np.zeros(3)
- s = np.array([1.0, 0.0, 0.0])
- t_neg, t_pos = intersect_trust_region(x, s, Delta)
- assert_equal(t_neg, -1)
- assert_equal(t_pos, 1)
- s = np.array([-1.0, 1.0, -1.0])
- t_neg, t_pos = intersect_trust_region(x, s, Delta)
- assert_allclose(t_neg, -3**-0.5)
- assert_allclose(t_pos, 3**-0.5)
- x = np.array([0.5, -0.5, 0])
- s = np.array([0, 0, 1.0])
- t_neg, t_pos = intersect_trust_region(x, s, Delta)
- assert_allclose(t_neg, -2**-0.5)
- assert_allclose(t_pos, 2**-0.5)
- x = np.ones(3)
- assert_raises(ValueError, intersect_trust_region, x, s, Delta)
- x = np.zeros(3)
- s = np.zeros(3)
- assert_raises(ValueError, intersect_trust_region, x, s, Delta)
- def test_reflective_transformation():
- lb = np.array([-1, -2], dtype=float)
- ub = np.array([5, 3], dtype=float)
- y = np.array([0, 0])
- x, g = reflective_transformation(y, lb, ub)
- assert_equal(x, y)
- assert_equal(g, np.ones(2))
- y = np.array([-4, 4], dtype=float)
- x, g = reflective_transformation(y, lb, np.array([np.inf, np.inf]))
- assert_equal(x, [2, 4])
- assert_equal(g, [-1, 1])
- x, g = reflective_transformation(y, np.array([-np.inf, -np.inf]), ub)
- assert_equal(x, [-4, 2])
- assert_equal(g, [1, -1])
- x, g = reflective_transformation(y, lb, ub)
- assert_equal(x, [2, 2])
- assert_equal(g, [-1, -1])
- lb = np.array([-np.inf, -2])
- ub = np.array([5, np.inf])
- y = np.array([10, 10], dtype=float)
- x, g = reflective_transformation(y, lb, ub)
- assert_equal(x, [0, 10])
- assert_equal(g, [-1, 1])
- def test_linear_operators():
- A = np.arange(6).reshape((3, 2))
- d_left = np.array([-1, 2, 5])
- DA = np.diag(d_left).dot(A)
- J_left = left_multiplied_operator(A, d_left)
- d_right = np.array([5, 10])
- AD = A.dot(np.diag(d_right))
- J_right = right_multiplied_operator(A, d_right)
- x = np.array([-2, 3])
- X = -2 * np.arange(2, 8).reshape((2, 3))
- xt = np.array([0, -2, 15])
- assert_allclose(DA.dot(x), J_left.matvec(x))
- assert_allclose(DA.dot(X), J_left.matmat(X))
- assert_allclose(DA.T.dot(xt), J_left.rmatvec(xt))
- assert_allclose(AD.dot(x), J_right.matvec(x))
- assert_allclose(AD.dot(X), J_right.matmat(X))
- assert_allclose(AD.T.dot(xt), J_right.rmatvec(xt))
|