123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234 |
- import pytest
- import numpy as np
- from numpy.testing import TestCase, assert_array_equal
- import scipy.sparse as sps
- from scipy.optimize._constraints import (
- Bounds, LinearConstraint, NonlinearConstraint, PreparedConstraint,
- new_bounds_to_old, old_bound_to_new, strict_bounds)
- class TestStrictBounds(TestCase):
- def test_scalarvalue_unique_enforce_feasibility(self):
- m = 3
- lb = 2
- ub = 4
- enforce_feasibility = False
- strict_lb, strict_ub = strict_bounds(lb, ub,
- enforce_feasibility,
- m)
- assert_array_equal(strict_lb, [-np.inf, -np.inf, -np.inf])
- assert_array_equal(strict_ub, [np.inf, np.inf, np.inf])
- enforce_feasibility = True
- strict_lb, strict_ub = strict_bounds(lb, ub,
- enforce_feasibility,
- m)
- assert_array_equal(strict_lb, [2, 2, 2])
- assert_array_equal(strict_ub, [4, 4, 4])
- def test_vectorvalue_unique_enforce_feasibility(self):
- m = 3
- lb = [1, 2, 3]
- ub = [4, 5, 6]
- enforce_feasibility = False
- strict_lb, strict_ub = strict_bounds(lb, ub,
- enforce_feasibility,
- m)
- assert_array_equal(strict_lb, [-np.inf, -np.inf, -np.inf])
- assert_array_equal(strict_ub, [np.inf, np.inf, np.inf])
- enforce_feasibility = True
- strict_lb, strict_ub = strict_bounds(lb, ub,
- enforce_feasibility,
- m)
- assert_array_equal(strict_lb, [1, 2, 3])
- assert_array_equal(strict_ub, [4, 5, 6])
- def test_scalarvalue_vector_enforce_feasibility(self):
- m = 3
- lb = 2
- ub = 4
- enforce_feasibility = [False, True, False]
- strict_lb, strict_ub = strict_bounds(lb, ub,
- enforce_feasibility,
- m)
- assert_array_equal(strict_lb, [-np.inf, 2, -np.inf])
- assert_array_equal(strict_ub, [np.inf, 4, np.inf])
- def test_vectorvalue_vector_enforce_feasibility(self):
- m = 3
- lb = [1, 2, 3]
- ub = [4, 6, np.inf]
- enforce_feasibility = [True, False, True]
- strict_lb, strict_ub = strict_bounds(lb, ub,
- enforce_feasibility,
- m)
- assert_array_equal(strict_lb, [1, -np.inf, 3])
- assert_array_equal(strict_ub, [4, np.inf, np.inf])
- def test_prepare_constraint_infeasible_x0():
- lb = np.array([0, 20, 30])
- ub = np.array([0.5, np.inf, 70])
- x0 = np.array([1, 2, 3])
- enforce_feasibility = np.array([False, True, True], dtype=bool)
- bounds = Bounds(lb, ub, enforce_feasibility)
- pytest.raises(ValueError, PreparedConstraint, bounds, x0)
- pc = PreparedConstraint(Bounds(lb, ub), [1, 2, 3])
- assert (pc.violation([1, 2, 3]) > 0).any()
- assert (pc.violation([0.25, 21, 31]) == 0).all()
- x0 = np.array([1, 2, 3, 4])
- A = np.array([[1, 2, 3, 4], [5, 0, 0, 6], [7, 0, 8, 0]])
- enforce_feasibility = np.array([True, True, True], dtype=bool)
- linear = LinearConstraint(A, -np.inf, 0, enforce_feasibility)
- pytest.raises(ValueError, PreparedConstraint, linear, x0)
- pc = PreparedConstraint(LinearConstraint(A, -np.inf, 0),
- [1, 2, 3, 4])
- assert (pc.violation([1, 2, 3, 4]) > 0).any()
- assert (pc.violation([-10, 2, -10, 4]) == 0).all()
- def fun(x):
- return A.dot(x)
- def jac(x):
- return A
- def hess(x, v):
- return sps.csr_matrix((4, 4))
- nonlinear = NonlinearConstraint(fun, -np.inf, 0, jac, hess,
- enforce_feasibility)
- pytest.raises(ValueError, PreparedConstraint, nonlinear, x0)
- pc = PreparedConstraint(nonlinear, [-10, 2, -10, 4])
- assert (pc.violation([1, 2, 3, 4]) > 0).any()
- assert (pc.violation([-10, 2, -10, 4]) == 0).all()
- def test_violation():
- def cons_f(x):
- return np.array([x[0] ** 2 + x[1], x[0] ** 2 - x[1]])
- nlc = NonlinearConstraint(cons_f, [-1, -0.8500], [2, 2])
- pc = PreparedConstraint(nlc, [0.5, 1])
- assert_array_equal(pc.violation([0.5, 1]), [0., 0.])
- np.testing.assert_almost_equal(pc.violation([0.5, 1.2]), [0., 0.1])
- np.testing.assert_almost_equal(pc.violation([1.2, 1.2]), [0.64, 0])
- np.testing.assert_almost_equal(pc.violation([0.1, -1.2]), [0.19, 0])
- np.testing.assert_almost_equal(pc.violation([0.1, 2]), [0.01, 1.14])
- def test_new_bounds_to_old():
- lb = np.array([-np.inf, 2, 3])
- ub = np.array([3, np.inf, 10])
- bounds = [(None, 3), (2, None), (3, 10)]
- assert_array_equal(new_bounds_to_old(lb, ub, 3), bounds)
- bounds_single_lb = [(-1, 3), (-1, None), (-1, 10)]
- assert_array_equal(new_bounds_to_old(-1, ub, 3), bounds_single_lb)
- bounds_no_lb = [(None, 3), (None, None), (None, 10)]
- assert_array_equal(new_bounds_to_old(-np.inf, ub, 3), bounds_no_lb)
- bounds_single_ub = [(None, 20), (2, 20), (3, 20)]
- assert_array_equal(new_bounds_to_old(lb, 20, 3), bounds_single_ub)
- bounds_no_ub = [(None, None), (2, None), (3, None)]
- assert_array_equal(new_bounds_to_old(lb, np.inf, 3), bounds_no_ub)
- bounds_single_both = [(1, 2), (1, 2), (1, 2)]
- assert_array_equal(new_bounds_to_old(1, 2, 3), bounds_single_both)
- bounds_no_both = [(None, None), (None, None), (None, None)]
- assert_array_equal(new_bounds_to_old(-np.inf, np.inf, 3), bounds_no_both)
- def test_old_bounds_to_new():
- bounds = ([1, 2], (None, 3), (-1, None))
- lb_true = np.array([1, -np.inf, -1])
- ub_true = np.array([2, 3, np.inf])
- lb, ub = old_bound_to_new(bounds)
- assert_array_equal(lb, lb_true)
- assert_array_equal(ub, ub_true)
- bounds = [(-np.inf, np.inf), (np.array([1]), np.array([1]))]
- lb, ub = old_bound_to_new(bounds)
- assert_array_equal(lb, [-np.inf, 1])
- assert_array_equal(ub, [np.inf, 1])
- class TestBounds:
- def test_repr(self):
- # so that eval works
- from numpy import array, inf # noqa
- for args in (
- (-1.0, 5.0),
- (-1.0, np.inf, True),
- (np.array([1.0, -np.inf]), np.array([2.0, np.inf])),
- (np.array([1.0, -np.inf]), np.array([2.0, np.inf]),
- np.array([True, False])),
- ):
- bounds = Bounds(*args)
- bounds2 = eval(repr(Bounds(*args)))
- assert_array_equal(bounds.lb, bounds2.lb)
- assert_array_equal(bounds.ub, bounds2.ub)
- assert_array_equal(bounds.keep_feasible, bounds2.keep_feasible)
- def test_array(self):
- # gh13501
- b = Bounds(lb=[0.0, 0.0], ub=[1.0, 1.0])
- assert isinstance(b.lb, np.ndarray)
- assert isinstance(b.ub, np.ndarray)
- def test_defaults(self):
- b1 = Bounds()
- b2 = Bounds(np.asarray(-np.inf), np.asarray(np.inf))
- assert b1.lb == b2.lb
- assert b1.ub == b2.ub
- def test_input_validation(self):
- message = "`lb`, `ub`, and `keep_feasible` must be broadcastable."
- with pytest.raises(ValueError, match=message):
- Bounds([1, 2], [1, 2, 3])
- def test_residual(self):
- bounds = Bounds(-2, 4)
- x0 = [-1, 2]
- np.testing.assert_allclose(bounds.residual(x0), ([1, 4], [5, 2]))
- class TestLinearConstraint:
- def test_defaults(self):
- A = np.eye(4)
- lc = LinearConstraint(A)
- lc2 = LinearConstraint(A, -np.inf, np.inf)
- assert_array_equal(lc.lb, lc2.lb)
- assert_array_equal(lc.ub, lc2.ub)
- def test_input_validation(self):
- A = np.eye(4)
- message = "`lb`, `ub`, and `keep_feasible` must be broadcastable"
- with pytest.raises(ValueError, match=message):
- LinearConstraint(A, [1, 2], [1, 2, 3])
- A = np.empty((4, 3, 5))
- message = "`A` must have exactly two dimensions."
- with pytest.raises(ValueError, match=message):
- LinearConstraint(A)
- def test_residual(self):
- A = np.eye(2)
- lc = LinearConstraint(A, -2, 4)
- x0 = [-1, 2]
- np.testing.assert_allclose(lc.residual(x0), ([1, 4], [5, 2]))
|