12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485 |
- from . import __nnls
- from numpy import asarray_chkfinite, zeros, double
- __all__ = ['nnls']
- def nnls(A, b, maxiter=None):
- """
- Solve ``argmin_x || Ax - b ||_2`` for ``x>=0``. This is a wrapper
- for a FORTRAN non-negative least squares solver.
- Parameters
- ----------
- A : ndarray
- Matrix ``A`` as shown above.
- b : ndarray
- Right-hand side vector.
- maxiter: int, optional
- Maximum number of iterations, optional.
- Default is ``3 * A.shape[1]``.
- Returns
- -------
- x : ndarray
- Solution vector.
- rnorm : float
- The residual, ``|| Ax-b ||_2``.
- See Also
- --------
- lsq_linear : Linear least squares with bounds on the variables
- Notes
- -----
- The FORTRAN code was published in the book below. The algorithm
- is an active set method. It solves the KKT (Karush-Kuhn-Tucker)
- conditions for the non-negative least squares problem.
- References
- ----------
- Lawson C., Hanson R.J., (1987) Solving Least Squares Problems, SIAM
- Examples
- --------
- >>> import numpy as np
- >>> from scipy.optimize import nnls
- ...
- >>> A = np.array([[1, 0], [1, 0], [0, 1]])
- >>> b = np.array([2, 1, 1])
- >>> nnls(A, b)
- (array([1.5, 1. ]), 0.7071067811865475)
- >>> b = np.array([-1, -1, -1])
- >>> nnls(A, b)
- (array([0., 0.]), 1.7320508075688772)
- """
- A, b = map(asarray_chkfinite, (A, b))
- if len(A.shape) != 2:
- raise ValueError("Expected a two-dimensional array (matrix)" +
- ", but the shape of A is %s" % (A.shape, ))
- if len(b.shape) != 1:
- raise ValueError("Expected a one-dimensional array (vector)" +
- ", but the shape of b is %s" % (b.shape, ))
- m, n = A.shape
- if m != b.shape[0]:
- raise ValueError(
- "Incompatible dimensions. The first dimension of " +
- "A is %s, while the shape of b is %s" % (m, (b.shape[0], )))
- maxiter = -1 if maxiter is None else int(maxiter)
- w = zeros((n,), dtype=double)
- zz = zeros((m,), dtype=double)
- index = zeros((n,), dtype=int)
- x, rnorm, mode = __nnls.nnls(A, m, n, b, w, zz, index, maxiter)
- if mode != 1:
- raise RuntimeError("too many iterations")
- return x, rnorm
|