| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038 | """Unified interfaces to minimization algorithms.Functions---------- minimize : minimization of a function of several variables.- minimize_scalar : minimization of a function of one variable."""__all__ = ['minimize', 'minimize_scalar']from warnings import warnimport numpy as np# unconstrained minimizationfrom ._optimize import (_minimize_neldermead, _minimize_powell, _minimize_cg,                        _minimize_bfgs, _minimize_newtoncg,                        _minimize_scalar_brent, _minimize_scalar_bounded,                        _minimize_scalar_golden, MemoizeJac, OptimizeResult)from ._trustregion_dogleg import _minimize_doglegfrom ._trustregion_ncg import _minimize_trust_ncgfrom ._trustregion_krylov import _minimize_trust_krylovfrom ._trustregion_exact import _minimize_trustregion_exactfrom ._trustregion_constr import _minimize_trustregion_constr# constrained minimizationfrom ._lbfgsb_py import _minimize_lbfgsbfrom ._tnc import _minimize_tncfrom ._cobyla_py import _minimize_cobylafrom ._slsqp_py import _minimize_slsqpfrom ._constraints import (old_bound_to_new, new_bounds_to_old,                           old_constraint_to_new, new_constraint_to_old,                           NonlinearConstraint, LinearConstraint, Bounds,                           PreparedConstraint)from ._differentiable_functions import FD_METHODSMINIMIZE_METHODS = ['nelder-mead', 'powell', 'cg', 'bfgs', 'newton-cg',                    'l-bfgs-b', 'tnc', 'cobyla', 'slsqp', 'trust-constr',                    'dogleg', 'trust-ncg', 'trust-exact', 'trust-krylov']MINIMIZE_SCALAR_METHODS = ['brent', 'bounded', 'golden']def minimize(fun, x0, args=(), method=None, jac=None, hess=None,             hessp=None, bounds=None, constraints=(), tol=None,             callback=None, options=None):    """Minimization of scalar function of one or more variables.    Parameters    ----------    fun : callable        The objective function to be minimized.            ``fun(x, *args) -> float``        where ``x`` is a 1-D array with shape (n,) and ``args``        is a tuple of the fixed parameters needed to completely        specify the function.    x0 : ndarray, shape (n,)        Initial guess. Array of real elements of size (n,),        where ``n`` is the number of independent variables.    args : tuple, optional        Extra arguments passed to the objective function and its        derivatives (`fun`, `jac` and `hess` functions).    method : str or callable, optional        Type of solver.  Should be one of            - 'Nelder-Mead' :ref:`(see here) <optimize.minimize-neldermead>`            - 'Powell'      :ref:`(see here) <optimize.minimize-powell>`            - 'CG'          :ref:`(see here) <optimize.minimize-cg>`            - 'BFGS'        :ref:`(see here) <optimize.minimize-bfgs>`            - 'Newton-CG'   :ref:`(see here) <optimize.minimize-newtoncg>`            - 'L-BFGS-B'    :ref:`(see here) <optimize.minimize-lbfgsb>`            - 'TNC'         :ref:`(see here) <optimize.minimize-tnc>`            - 'COBYLA'      :ref:`(see here) <optimize.minimize-cobyla>`            - 'SLSQP'       :ref:`(see here) <optimize.minimize-slsqp>`            - 'trust-constr':ref:`(see here) <optimize.minimize-trustconstr>`            - 'dogleg'      :ref:`(see here) <optimize.minimize-dogleg>`            - 'trust-ncg'   :ref:`(see here) <optimize.minimize-trustncg>`            - 'trust-exact' :ref:`(see here) <optimize.minimize-trustexact>`            - 'trust-krylov' :ref:`(see here) <optimize.minimize-trustkrylov>`            - custom - a callable object, see below for description.        If not given, chosen to be one of ``BFGS``, ``L-BFGS-B``, ``SLSQP``,        depending on whether or not the problem has constraints or bounds.    jac : {callable,  '2-point', '3-point', 'cs', bool}, optional        Method for computing the gradient vector. Only for CG, BFGS,        Newton-CG, L-BFGS-B, TNC, SLSQP, dogleg, trust-ncg, trust-krylov,        trust-exact and trust-constr.        If it is a callable, it should be a function that returns the gradient        vector:            ``jac(x, *args) -> array_like, shape (n,)``        where ``x`` is an array with shape (n,) and ``args`` is a tuple with        the fixed parameters. If `jac` is a Boolean and is True, `fun` is        assumed to return a tuple ``(f, g)`` containing the objective        function and the gradient.        Methods 'Newton-CG', 'trust-ncg', 'dogleg', 'trust-exact', and        'trust-krylov' require that either a callable be supplied, or that        `fun` return the objective and gradient.        If None or False, the gradient will be estimated using 2-point finite        difference estimation with an absolute step size.        Alternatively, the keywords  {'2-point', '3-point', 'cs'} can be used        to select a finite difference scheme for numerical estimation of the        gradient with a relative step size. These finite difference schemes        obey any specified `bounds`.    hess : {callable, '2-point', '3-point', 'cs', HessianUpdateStrategy}, optional        Method for computing the Hessian matrix. Only for Newton-CG, dogleg,        trust-ncg, trust-krylov, trust-exact and trust-constr.        If it is callable, it should return the Hessian matrix:            ``hess(x, *args) -> {LinearOperator, spmatrix, array}, (n, n)``        where ``x`` is a (n,) ndarray and ``args`` is a tuple with the fixed        parameters.        The keywords {'2-point', '3-point', 'cs'} can also be used to select        a finite difference scheme for numerical estimation of the hessian.        Alternatively, objects implementing the `HessianUpdateStrategy`        interface can be used to approximate the Hessian. Available        quasi-Newton methods implementing this interface are:            - `BFGS`;            - `SR1`.        Not all of the options are available for each of the methods; for        availability refer to the notes.    hessp : callable, optional        Hessian of objective function times an arbitrary vector p. Only for        Newton-CG, trust-ncg, trust-krylov, trust-constr.        Only one of `hessp` or `hess` needs to be given. If `hess` is        provided, then `hessp` will be ignored. `hessp` must compute the        Hessian times an arbitrary vector:            ``hessp(x, p, *args) ->  ndarray shape (n,)``        where ``x`` is a (n,) ndarray, ``p`` is an arbitrary vector with        dimension (n,) and ``args`` is a tuple with the fixed        parameters.    bounds : sequence or `Bounds`, optional        Bounds on variables for Nelder-Mead, L-BFGS-B, TNC, SLSQP, Powell, and        trust-constr methods. There are two ways to specify the bounds:            1. Instance of `Bounds` class.            2. Sequence of ``(min, max)`` pairs for each element in `x`. None               is used to specify no bound.    constraints : {Constraint, dict} or List of {Constraint, dict}, optional        Constraints definition. Only for COBYLA, SLSQP and trust-constr.        Constraints for 'trust-constr' are defined as a single object or a        list of objects specifying constraints to the optimization problem.        Available constraints are:            - `LinearConstraint`            - `NonlinearConstraint`        Constraints for COBYLA, SLSQP are defined as a list of dictionaries.        Each dictionary with fields:            type : str                Constraint type: 'eq' for equality, 'ineq' for inequality.            fun : callable                The function defining the constraint.            jac : callable, optional                The Jacobian of `fun` (only for SLSQP).            args : sequence, optional                Extra arguments to be passed to the function and Jacobian.        Equality constraint means that the constraint function result is to        be zero whereas inequality means that it is to be non-negative.        Note that COBYLA only supports inequality constraints.    tol : float, optional        Tolerance for termination. When `tol` is specified, the selected        minimization algorithm sets some relevant solver-specific tolerance(s)        equal to `tol`. For detailed control, use solver-specific        options.    options : dict, optional        A dictionary of solver options. All methods except `TNC` accept the        following generic options:            maxiter : int                Maximum number of iterations to perform. Depending on the                method each iteration may use several function evaluations.                For `TNC` use `maxfun` instead of `maxiter`.            disp : bool                Set to True to print convergence messages.        For method-specific options, see :func:`show_options()`.    callback : callable, optional        Called after each iteration. For 'trust-constr' it is a callable with        the signature:            ``callback(xk, OptimizeResult state) -> bool``        where ``xk`` is the current parameter vector. and ``state``        is an `OptimizeResult` object, with the same fields        as the ones from the return. If callback returns True        the algorithm execution is terminated.        For all the other methods, the signature is:            ``callback(xk)``        where ``xk`` is the current parameter vector.    Returns    -------    res : OptimizeResult        The optimization result represented as a ``OptimizeResult`` object.        Important attributes are: ``x`` the solution array, ``success`` a        Boolean flag indicating if the optimizer exited successfully and        ``message`` which describes the cause of the termination. See        `OptimizeResult` for a description of other attributes.    See also    --------    minimize_scalar : Interface to minimization algorithms for scalar        univariate functions    show_options : Additional options accepted by the solvers    Notes    -----    This section describes the available solvers that can be selected by the    'method' parameter. The default method is *BFGS*.    **Unconstrained minimization**    Method :ref:`CG <optimize.minimize-cg>` uses a nonlinear conjugate    gradient algorithm by Polak and Ribiere, a variant of the    Fletcher-Reeves method described in [5]_ pp.120-122. Only the    first derivatives are used.    Method :ref:`BFGS <optimize.minimize-bfgs>` uses the quasi-Newton    method of Broyden, Fletcher, Goldfarb, and Shanno (BFGS) [5]_    pp. 136. It uses the first derivatives only. BFGS has proven good    performance even for non-smooth optimizations. This method also    returns an approximation of the Hessian inverse, stored as    `hess_inv` in the OptimizeResult object.    Method :ref:`Newton-CG <optimize.minimize-newtoncg>` uses a    Newton-CG algorithm [5]_ pp. 168 (also known as the truncated    Newton method). It uses a CG method to the compute the search    direction. See also *TNC* method for a box-constrained    minimization with a similar algorithm. Suitable for large-scale    problems.    Method :ref:`dogleg <optimize.minimize-dogleg>` uses the dog-leg    trust-region algorithm [5]_ for unconstrained minimization. This    algorithm requires the gradient and Hessian; furthermore the    Hessian is required to be positive definite.    Method :ref:`trust-ncg <optimize.minimize-trustncg>` uses the    Newton conjugate gradient trust-region algorithm [5]_ for    unconstrained minimization. This algorithm requires the gradient    and either the Hessian or a function that computes the product of    the Hessian with a given vector. Suitable for large-scale problems.    Method :ref:`trust-krylov <optimize.minimize-trustkrylov>` uses    the Newton GLTR trust-region algorithm [14]_, [15]_ for unconstrained    minimization. This algorithm requires the gradient    and either the Hessian or a function that computes the product of    the Hessian with a given vector. Suitable for large-scale problems.    On indefinite problems it requires usually less iterations than the    `trust-ncg` method and is recommended for medium and large-scale problems.    Method :ref:`trust-exact <optimize.minimize-trustexact>`    is a trust-region method for unconstrained minimization in which    quadratic subproblems are solved almost exactly [13]_. This    algorithm requires the gradient and the Hessian (which is    *not* required to be positive definite). It is, in many    situations, the Newton method to converge in fewer iterations    and the most recommended for small and medium-size problems.    **Bound-Constrained minimization**    Method :ref:`Nelder-Mead <optimize.minimize-neldermead>` uses the    Simplex algorithm [1]_, [2]_. This algorithm is robust in many    applications. However, if numerical computation of derivative can be    trusted, other algorithms using the first and/or second derivatives    information might be preferred for their better performance in    general.    Method :ref:`L-BFGS-B <optimize.minimize-lbfgsb>` uses the L-BFGS-B    algorithm [6]_, [7]_ for bound constrained minimization.    Method :ref:`Powell <optimize.minimize-powell>` is a modification    of Powell's method [3]_, [4]_ which is a conjugate direction    method. It performs sequential one-dimensional minimizations along    each vector of the directions set (`direc` field in `options` and    `info`), which is updated at each iteration of the main    minimization loop. The function need not be differentiable, and no    derivatives are taken. If bounds are not provided, then an    unbounded line search will be used. If bounds are provided and    the initial guess is within the bounds, then every function    evaluation throughout the minimization procedure will be within    the bounds. If bounds are provided, the initial guess is outside    the bounds, and `direc` is full rank (default has full rank), then    some function evaluations during the first iteration may be    outside the bounds, but every function evaluation after the first    iteration will be within the bounds. If `direc` is not full rank,    then some parameters may not be optimized and the solution is not    guaranteed to be within the bounds.    Method :ref:`TNC <optimize.minimize-tnc>` uses a truncated Newton    algorithm [5]_, [8]_ to minimize a function with variables subject    to bounds. This algorithm uses gradient information; it is also    called Newton Conjugate-Gradient. It differs from the *Newton-CG*    method described above as it wraps a C implementation and allows    each variable to be given upper and lower bounds.    **Constrained Minimization**    Method :ref:`COBYLA <optimize.minimize-cobyla>` uses the    Constrained Optimization BY Linear Approximation (COBYLA) method    [9]_, [10]_, [11]_. The algorithm is based on linear    approximations to the objective function and each constraint. The    method wraps a FORTRAN implementation of the algorithm. The    constraints functions 'fun' may return either a single number    or an array or list of numbers.    Method :ref:`SLSQP <optimize.minimize-slsqp>` uses Sequential    Least SQuares Programming to minimize a function of several    variables with any combination of bounds, equality and inequality    constraints. The method wraps the SLSQP Optimization subroutine    originally implemented by Dieter Kraft [12]_. Note that the    wrapper handles infinite values in bounds by converting them into    large floating values.    Method :ref:`trust-constr <optimize.minimize-trustconstr>` is a    trust-region algorithm for constrained optimization. It swiches    between two implementations depending on the problem definition.    It is the most versatile constrained minimization algorithm    implemented in SciPy and the most appropriate for large-scale problems.    For equality constrained problems it is an implementation of Byrd-Omojokun    Trust-Region SQP method described in [17]_ and in [5]_, p. 549. When    inequality constraints are imposed as well, it swiches to the trust-region    interior point method described in [16]_. This interior point algorithm,    in turn, solves inequality constraints by introducing slack variables    and solving a sequence of equality-constrained barrier problems    for progressively smaller values of the barrier parameter.    The previously described equality constrained SQP method is    used to solve the subproblems with increasing levels of accuracy    as the iterate gets closer to a solution.    **Finite-Difference Options**    For Method :ref:`trust-constr <optimize.minimize-trustconstr>`    the gradient and the Hessian may be approximated using    three finite-difference schemes: {'2-point', '3-point', 'cs'}.    The scheme 'cs' is, potentially, the most accurate but it    requires the function to correctly handle complex inputs and to    be differentiable in the complex plane. The scheme '3-point' is more    accurate than '2-point' but requires twice as many operations. If the    gradient is estimated via finite-differences the Hessian must be    estimated using one of the quasi-Newton strategies.    **Method specific options for the** `hess` **keyword**    +--------------+------+----------+-------------------------+-----+    | method/Hess  | None | callable | '2-point/'3-point'/'cs' | HUS |    +==============+======+==========+=========================+=====+    | Newton-CG    | x    | (n, n)   | x                       | x   |    |              |      | LO       |                         |     |    +--------------+------+----------+-------------------------+-----+    | dogleg       |      | (n, n)   |                         |     |    +--------------+------+----------+-------------------------+-----+    | trust-ncg    |      | (n, n)   | x                       | x   |    +--------------+------+----------+-------------------------+-----+    | trust-krylov |      | (n, n)   | x                       | x   |    +--------------+------+----------+-------------------------+-----+    | trust-exact  |      | (n, n)   |                         |     |    +--------------+------+----------+-------------------------+-----+    | trust-constr | x    | (n, n)   |  x                      | x   |    |              |      | LO       |                         |     |    |              |      | sp       |                         |     |    +--------------+------+----------+-------------------------+-----+    where LO=LinearOperator, sp=Sparse matrix, HUS=HessianUpdateStrategy    **Custom minimizers**    It may be useful to pass a custom minimization method, for example    when using a frontend to this method such as `scipy.optimize.basinhopping`    or a different library.  You can simply pass a callable as the ``method``    parameter.    The callable is called as ``method(fun, x0, args, **kwargs, **options)``    where ``kwargs`` corresponds to any other parameters passed to `minimize`    (such as `callback`, `hess`, etc.), except the `options` dict, which has    its contents also passed as `method` parameters pair by pair.  Also, if    `jac` has been passed as a bool type, `jac` and `fun` are mangled so that    `fun` returns just the function values and `jac` is converted to a function    returning the Jacobian.  The method shall return an `OptimizeResult`    object.    The provided `method` callable must be able to accept (and possibly ignore)    arbitrary parameters; the set of parameters accepted by `minimize` may    expand in future versions and then these parameters will be passed to    the method.  You can find an example in the scipy.optimize tutorial.    References    ----------    .. [1] Nelder, J A, and R Mead. 1965. A Simplex Method for Function        Minimization. The Computer Journal 7: 308-13.    .. [2] Wright M H. 1996. Direct search methods: Once scorned, now        respectable, in Numerical Analysis 1995: Proceedings of the 1995        Dundee Biennial Conference in Numerical Analysis (Eds. D F        Griffiths and G A Watson). Addison Wesley Longman, Harlow, UK.        191-208.    .. [3] Powell, M J D. 1964. An efficient method for finding the minimum of       a function of several variables without calculating derivatives. The       Computer Journal 7: 155-162.    .. [4] Press W, S A Teukolsky, W T Vetterling and B P Flannery.       Numerical Recipes (any edition), Cambridge University Press.    .. [5] Nocedal, J, and S J Wright. 2006. Numerical Optimization.       Springer New York.    .. [6] Byrd, R H and P Lu and J. Nocedal. 1995. A Limited Memory       Algorithm for Bound Constrained Optimization. SIAM Journal on       Scientific and Statistical Computing 16 (5): 1190-1208.    .. [7] Zhu, C and R H Byrd and J Nocedal. 1997. L-BFGS-B: Algorithm       778: L-BFGS-B, FORTRAN routines for large scale bound constrained       optimization. ACM Transactions on Mathematical Software 23 (4):       550-560.    .. [8] Nash, S G. Newton-Type Minimization Via the Lanczos Method.       1984. SIAM Journal of Numerical Analysis 21: 770-778.    .. [9] Powell, M J D. A direct search optimization method that models       the objective and constraint functions by linear interpolation.       1994. Advances in Optimization and Numerical Analysis, eds. S. Gomez       and J-P Hennart, Kluwer Academic (Dordrecht), 51-67.    .. [10] Powell M J D. Direct search algorithms for optimization       calculations. 1998. Acta Numerica 7: 287-336.    .. [11] Powell M J D. A view of algorithms for optimization without       derivatives. 2007.Cambridge University Technical Report DAMTP       2007/NA03    .. [12] Kraft, D. A software package for sequential quadratic       programming. 1988. Tech. Rep. DFVLR-FB 88-28, DLR German Aerospace       Center -- Institute for Flight Mechanics, Koln, Germany.    .. [13] Conn, A. R., Gould, N. I., and Toint, P. L.       Trust region methods. 2000. Siam. pp. 169-200.    .. [14] F. Lenders, C. Kirches, A. Potschka: "trlib: A vector-free       implementation of the GLTR method for iterative solution of       the trust region problem", :arxiv:`1611.04718`    .. [15] N. Gould, S. Lucidi, M. Roma, P. Toint: "Solving the       Trust-Region Subproblem using the Lanczos Method",       SIAM J. Optim., 9(2), 504--525, (1999).    .. [16] Byrd, Richard H., Mary E. Hribar, and Jorge Nocedal. 1999.        An interior point algorithm for large-scale nonlinear  programming.        SIAM Journal on Optimization 9.4: 877-900.    .. [17] Lalee, Marucha, Jorge Nocedal, and Todd Plantega. 1998. On the        implementation of an algorithm for large-scale equality constrained        optimization. SIAM Journal on Optimization 8.3: 682-706.    Examples    --------    Let us consider the problem of minimizing the Rosenbrock function. This    function (and its respective derivatives) is implemented in `rosen`    (resp. `rosen_der`, `rosen_hess`) in the `scipy.optimize`.    >>> from scipy.optimize import minimize, rosen, rosen_der    A simple application of the *Nelder-Mead* method is:    >>> x0 = [1.3, 0.7, 0.8, 1.9, 1.2]    >>> res = minimize(rosen, x0, method='Nelder-Mead', tol=1e-6)    >>> res.x    array([ 1.,  1.,  1.,  1.,  1.])    Now using the *BFGS* algorithm, using the first derivative and a few    options:    >>> res = minimize(rosen, x0, method='BFGS', jac=rosen_der,    ...                options={'gtol': 1e-6, 'disp': True})    Optimization terminated successfully.             Current function value: 0.000000             Iterations: 26             Function evaluations: 31             Gradient evaluations: 31    >>> res.x    array([ 1.,  1.,  1.,  1.,  1.])    >>> print(res.message)    Optimization terminated successfully.    >>> res.hess_inv    array([[ 0.00749589,  0.01255155,  0.02396251,  0.04750988,  0.09495377],  # may vary           [ 0.01255155,  0.02510441,  0.04794055,  0.09502834,  0.18996269],           [ 0.02396251,  0.04794055,  0.09631614,  0.19092151,  0.38165151],           [ 0.04750988,  0.09502834,  0.19092151,  0.38341252,  0.7664427 ],           [ 0.09495377,  0.18996269,  0.38165151,  0.7664427,   1.53713523]])    Next, consider a minimization problem with several constraints (namely    Example 16.4 from [5]_). The objective function is:    >>> fun = lambda x: (x[0] - 1)**2 + (x[1] - 2.5)**2    There are three constraints defined as:    >>> cons = ({'type': 'ineq', 'fun': lambda x:  x[0] - 2 * x[1] + 2},    ...         {'type': 'ineq', 'fun': lambda x: -x[0] - 2 * x[1] + 6},    ...         {'type': 'ineq', 'fun': lambda x: -x[0] + 2 * x[1] + 2})    And variables must be positive, hence the following bounds:    >>> bnds = ((0, None), (0, None))    The optimization problem is solved using the SLSQP method as:    >>> res = minimize(fun, (2, 0), method='SLSQP', bounds=bnds,    ...                constraints=cons)    It should converge to the theoretical solution (1.4 ,1.7).    """    x0 = np.atleast_1d(np.asarray(x0))    if x0.ndim != 1:        message = ('Use of `minimize` with `x0.ndim != 1` is deprecated. '                   'Currently, singleton dimensions will be removed from '                   '`x0`, but an error will be raised in SciPy 1.11.0.')        warn(message, DeprecationWarning, stacklevel=2)        x0 = np.atleast_1d(np.squeeze(x0))    if x0.dtype.kind in np.typecodes["AllInteger"]:        x0 = np.asarray(x0, dtype=float)    if not isinstance(args, tuple):        args = (args,)    if method is None:        # Select automatically        if constraints:            method = 'SLSQP'        elif bounds is not None:            method = 'L-BFGS-B'        else:            method = 'BFGS'    if callable(method):        meth = "_custom"    else:        meth = method.lower()    if options is None:        options = {}    # check if optional parameters are supported by the selected method    # - jac    if meth in ('nelder-mead', 'powell', 'cobyla') and bool(jac):        warn('Method %s does not use gradient information (jac).' % method,             RuntimeWarning)    # - hess    if meth not in ('newton-cg', 'dogleg', 'trust-ncg', 'trust-constr',                    'trust-krylov', 'trust-exact', '_custom') and hess is not None:        warn('Method %s does not use Hessian information (hess).' % method,             RuntimeWarning)    # - hessp    if meth not in ('newton-cg', 'trust-ncg', 'trust-constr',                    'trust-krylov', '_custom') \       and hessp is not None:        warn('Method %s does not use Hessian-vector product '             'information (hessp).' % method, RuntimeWarning)    # - constraints or bounds    if (meth not in ('cobyla', 'slsqp', 'trust-constr', '_custom') and            np.any(constraints)):        warn('Method %s cannot handle constraints.' % method,             RuntimeWarning)    if meth not in ('nelder-mead', 'powell', 'l-bfgs-b', 'tnc', 'slsqp',                    'trust-constr', '_custom') and bounds is not None:        warn('Method %s cannot handle bounds.' % method,             RuntimeWarning)    # - return_all    if (meth in ('l-bfgs-b', 'tnc', 'cobyla', 'slsqp') and            options.get('return_all', False)):        warn('Method %s does not support the return_all option.' % method,             RuntimeWarning)    # check gradient vector    if callable(jac):        pass    elif jac is True:        # fun returns func and grad        fun = MemoizeJac(fun)        jac = fun.derivative    elif (jac in FD_METHODS and          meth in ['trust-constr', 'bfgs', 'cg', 'l-bfgs-b', 'tnc', 'slsqp']):        # finite differences with relative step        pass    elif meth in ['trust-constr']:        # default jac calculation for this method        jac = '2-point'    elif jac is None or bool(jac) is False:        # this will cause e.g. LBFGS to use forward difference, absolute step        jac = None    else:        # default if jac option is not understood        jac = None    # set default tolerances    if tol is not None:        options = dict(options)        if meth == 'nelder-mead':            options.setdefault('xatol', tol)            options.setdefault('fatol', tol)        if meth in ('newton-cg', 'powell', 'tnc'):            options.setdefault('xtol', tol)        if meth in ('powell', 'l-bfgs-b', 'tnc', 'slsqp'):            options.setdefault('ftol', tol)        if meth in ('bfgs', 'cg', 'l-bfgs-b', 'tnc', 'dogleg',                    'trust-ncg', 'trust-exact', 'trust-krylov'):            options.setdefault('gtol', tol)        if meth in ('cobyla', '_custom'):            options.setdefault('tol', tol)        if meth == 'trust-constr':            options.setdefault('xtol', tol)            options.setdefault('gtol', tol)            options.setdefault('barrier_tol', tol)    if meth == '_custom':        # custom method called before bounds and constraints are 'standardised'        # custom method should be able to accept whatever bounds/constraints        # are provided to it.        return method(fun, x0, args=args, jac=jac, hess=hess, hessp=hessp,                      bounds=bounds, constraints=constraints,                      callback=callback, **options)    constraints = standardize_constraints(constraints, x0, meth)    remove_vars = False    if bounds is not None:        if meth in {"tnc", "slsqp", "l-bfgs-b"}:            # These methods can't take the finite-difference derivatives they            # need when a variable is fixed by the bounds. To avoid this issue,            # remove fixed variables from the problem.            # NOTE: if this list is expanded, then be sure to update the            # accompanying tests and test_optimize.eb_data. Consider also if            # default OptimizeResult will need updating.            # convert to new-style bounds so we only have to consider one case            bounds = standardize_bounds(bounds, x0, 'new')            # determine whether any variables are fixed            i_fixed = (bounds.lb == bounds.ub)            if np.all(i_fixed):                # all the parameters are fixed, a minimizer is not able to do                # anything                return _optimize_result_for_equal_bounds(                    fun, bounds, meth, args=args, constraints=constraints                )            # determine whether finite differences are needed for any grad/jac            fd_needed = (not callable(jac))            for con in constraints:                if not callable(con.get('jac', None)):                    fd_needed = True            # If finite differences are ever used, remove all fixed variables            # Always remove fixed variables for TNC; see gh-14565            remove_vars = i_fixed.any() and (fd_needed or meth == "tnc")            if remove_vars:                x_fixed = (bounds.lb)[i_fixed]                x0 = x0[~i_fixed]                bounds = _remove_from_bounds(bounds, i_fixed)                fun = _remove_from_func(fun, i_fixed, x_fixed)                if callable(callback):                    callback = _remove_from_func(callback, i_fixed, x_fixed)                if callable(jac):                    jac = _remove_from_func(jac, i_fixed, x_fixed, remove=1)                # make a copy of the constraints so the user's version doesn't                # get changed. (Shallow copy is ok)                constraints = [con.copy() for con in constraints]                for con in constraints:  # yes, guaranteed to be a list                    con['fun'] = _remove_from_func(con['fun'], i_fixed,                                                   x_fixed, min_dim=1,                                                   remove=0)                    if callable(con.get('jac', None)):                        con['jac'] = _remove_from_func(con['jac'], i_fixed,                                                       x_fixed, min_dim=2,                                                       remove=1)        bounds = standardize_bounds(bounds, x0, meth)    if meth == 'nelder-mead':        res = _minimize_neldermead(fun, x0, args, callback, bounds=bounds,                                   **options)    elif meth == 'powell':        res = _minimize_powell(fun, x0, args, callback, bounds, **options)    elif meth == 'cg':        res = _minimize_cg(fun, x0, args, jac, callback, **options)    elif meth == 'bfgs':        res = _minimize_bfgs(fun, x0, args, jac, callback, **options)    elif meth == 'newton-cg':        res = _minimize_newtoncg(fun, x0, args, jac, hess, hessp, callback,                                 **options)    elif meth == 'l-bfgs-b':        res = _minimize_lbfgsb(fun, x0, args, jac, bounds,                               callback=callback, **options)    elif meth == 'tnc':        res = _minimize_tnc(fun, x0, args, jac, bounds, callback=callback,                            **options)    elif meth == 'cobyla':        res = _minimize_cobyla(fun, x0, args, constraints, callback=callback,                                **options)    elif meth == 'slsqp':        res = _minimize_slsqp(fun, x0, args, jac, bounds,                              constraints, callback=callback, **options)    elif meth == 'trust-constr':        res = _minimize_trustregion_constr(fun, x0, args, jac, hess, hessp,                                           bounds, constraints,                                           callback=callback, **options)    elif meth == 'dogleg':        res = _minimize_dogleg(fun, x0, args, jac, hess,                               callback=callback, **options)    elif meth == 'trust-ncg':        res = _minimize_trust_ncg(fun, x0, args, jac, hess, hessp,                                  callback=callback, **options)    elif meth == 'trust-krylov':        res = _minimize_trust_krylov(fun, x0, args, jac, hess, hessp,                                     callback=callback, **options)    elif meth == 'trust-exact':        res = _minimize_trustregion_exact(fun, x0, args, jac, hess,                                          callback=callback, **options)    else:        raise ValueError('Unknown solver %s' % method)    if remove_vars:        res.x = _add_to_array(res.x, i_fixed, x_fixed)        res.jac = _add_to_array(res.jac, i_fixed, np.nan)        if "hess_inv" in res:            res.hess_inv = None  # unknown    return resdef minimize_scalar(fun, bracket=None, bounds=None, args=(),                    method=None, tol=None, options=None):    """Minimization of scalar function of one variable.    Parameters    ----------    fun : callable        Objective function.        Scalar function, must return a scalar.    bracket : sequence, optional        For methods 'brent' and 'golden', `bracket` defines the bracketing        interval and can either have three items ``(a, b, c)`` so that        ``a < b < c`` and ``fun(b) < fun(a), fun(c)`` or two items ``a`` and        ``c`` which are assumed to be a starting interval for a downhill        bracket search (see `bracket`); it doesn't always mean that the        obtained solution will satisfy ``a <= x <= c``.    bounds : sequence, optional        For method 'bounded', `bounds` is mandatory and must have two finite        items corresponding to the optimization bounds.    args : tuple, optional        Extra arguments passed to the objective function.    method : str or callable, optional        Type of solver.  Should be one of:            - :ref:`Brent <optimize.minimize_scalar-brent>`            - :ref:`Bounded <optimize.minimize_scalar-bounded>`            - :ref:`Golden <optimize.minimize_scalar-golden>`            - custom - a callable object (added in version 0.14.0), see below        Default is "Bounded" if bounds are provided and "Brent" otherwise.        See the 'Notes' section for details of each solver.    tol : float, optional        Tolerance for termination. For detailed control, use solver-specific        options.    options : dict, optional        A dictionary of solver options.            maxiter : int                Maximum number of iterations to perform.            disp : bool                Set to True to print convergence messages.        See :func:`show_options()` for solver-specific options.    Returns    -------    res : OptimizeResult        The optimization result represented as a ``OptimizeResult`` object.        Important attributes are: ``x`` the solution array, ``success`` a        Boolean flag indicating if the optimizer exited successfully and        ``message`` which describes the cause of the termination. See        `OptimizeResult` for a description of other attributes.    See also    --------    minimize : Interface to minimization algorithms for scalar multivariate        functions    show_options : Additional options accepted by the solvers    Notes    -----    This section describes the available solvers that can be selected by the    'method' parameter. The default method is the ``"Bounded"`` Brent method if    `bounds` are passed and unbounded ``"Brent"`` otherwise.    Method :ref:`Brent <optimize.minimize_scalar-brent>` uses Brent's    algorithm [1]_ to find a local minimum.  The algorithm uses inverse    parabolic interpolation when possible to speed up convergence of    the golden section method.    Method :ref:`Golden <optimize.minimize_scalar-golden>` uses the    golden section search technique [1]_. It uses analog of the bisection    method to decrease the bracketed interval. It is usually    preferable to use the *Brent* method.    Method :ref:`Bounded <optimize.minimize_scalar-bounded>` can    perform bounded minimization [2]_ [3]_. It uses the Brent method to find a    local minimum in the interval x1 < xopt < x2.    **Custom minimizers**    It may be useful to pass a custom minimization method, for example    when using some library frontend to minimize_scalar. You can simply    pass a callable as the ``method`` parameter.    The callable is called as ``method(fun, args, **kwargs, **options)``    where ``kwargs`` corresponds to any other parameters passed to `minimize`    (such as `bracket`, `tol`, etc.), except the `options` dict, which has    its contents also passed as `method` parameters pair by pair.  The method    shall return an `OptimizeResult` object.    The provided `method` callable must be able to accept (and possibly ignore)    arbitrary parameters; the set of parameters accepted by `minimize` may    expand in future versions and then these parameters will be passed to    the method. You can find an example in the scipy.optimize tutorial.    .. versionadded:: 0.11.0    References    ----------    .. [1] Press, W., S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery.           Numerical Recipes in C. Cambridge University Press.    .. [2] Forsythe, G.E., M. A. Malcolm, and C. B. Moler. "Computer Methods           for Mathematical Computations." Prentice-Hall Series in Automatic           Computation 259 (1977).    .. [3] Brent, Richard P. Algorithms for Minimization Without Derivatives.           Courier Corporation, 2013.    Examples    --------    Consider the problem of minimizing the following function.    >>> def f(x):    ...     return (x - 2) * x * (x + 2)**2    Using the *Brent* method, we find the local minimum as:    >>> from scipy.optimize import minimize_scalar    >>> res = minimize_scalar(f)    >>> res.fun    -9.9149495908    The minimizer is:    >>> res.x    1.28077640403    Using the *Bounded* method, we find a local minimum with specified    bounds as:    >>> res = minimize_scalar(f, bounds=(-3, -1), method='bounded')    >>> res.fun  # minimum    3.28365179850e-13    >>> res.x  # minimizer    -2.0000002026    """    if not isinstance(args, tuple):        args = (args,)    if callable(method):        meth = "_custom"    elif method is None:        meth = 'brent' if bounds is None else 'bounded'    else:        meth = method.lower()    if options is None:        options = {}    if bounds is not None and meth in {'brent', 'golden'}:        message = f"Use of `bounds` is incompatible with 'method={method}'."        raise ValueError(message)    if tol is not None:        options = dict(options)        if meth == 'bounded' and 'xatol' not in options:            warn("Method 'bounded' does not support relative tolerance in x; "                 "defaulting to absolute tolerance.", RuntimeWarning)            options['xatol'] = tol        elif meth == '_custom':            options.setdefault('tol', tol)        else:            options.setdefault('xtol', tol)    # replace boolean "disp" option, if specified, by an integer value.    disp = options.get('disp')    if isinstance(disp, bool):        options['disp'] = 2 * int(disp)    if meth == '_custom':        return method(fun, args=args, bracket=bracket, bounds=bounds, **options)    elif meth == 'brent':        return _minimize_scalar_brent(fun, bracket, args, **options)    elif meth == 'bounded':        if bounds is None:            raise ValueError('The `bounds` parameter is mandatory for '                             'method `bounded`.')        return _minimize_scalar_bounded(fun, bounds, args, **options)    elif meth == 'golden':        return _minimize_scalar_golden(fun, bracket, args, **options)    else:        raise ValueError('Unknown solver %s' % method)def _remove_from_bounds(bounds, i_fixed):    """Removes fixed variables from a `Bounds` instance"""    lb = bounds.lb[~i_fixed]    ub = bounds.ub[~i_fixed]    return Bounds(lb, ub)  # don't mutate original Bounds objectdef _remove_from_func(fun_in, i_fixed, x_fixed, min_dim=None, remove=0):    """Wraps a function such that fixed variables need not be passed in"""    def fun_out(x_in, *args, **kwargs):        x_out = np.zeros_like(i_fixed, dtype=x_in.dtype)        x_out[i_fixed] = x_fixed        x_out[~i_fixed] = x_in        y_out = fun_in(x_out, *args, **kwargs)        y_out = np.array(y_out)        if min_dim == 1:            y_out = np.atleast_1d(y_out)        elif min_dim == 2:            y_out = np.atleast_2d(y_out)        if remove == 1:            y_out = y_out[..., ~i_fixed]        elif remove == 2:            y_out = y_out[~i_fixed, ~i_fixed]        return y_out    return fun_outdef _add_to_array(x_in, i_fixed, x_fixed):    """Adds fixed variables back to an array"""    i_free = ~i_fixed    if x_in.ndim == 2:        i_free = i_free[:, None] @ i_free[None, :]    x_out = np.zeros_like(i_free, dtype=x_in.dtype)    x_out[~i_free] = x_fixed    x_out[i_free] = x_in.ravel()    return x_outdef standardize_bounds(bounds, x0, meth):    """Converts bounds to the form required by the solver."""    if meth in {'trust-constr', 'powell', 'nelder-mead', 'new'}:        if not isinstance(bounds, Bounds):            lb, ub = old_bound_to_new(bounds)            bounds = Bounds(lb, ub)    elif meth in ('l-bfgs-b', 'tnc', 'slsqp', 'old'):        if isinstance(bounds, Bounds):            bounds = new_bounds_to_old(bounds.lb, bounds.ub, x0.shape[0])    return boundsdef standardize_constraints(constraints, x0, meth):    """Converts constraints to the form required by the solver."""    all_constraint_types = (NonlinearConstraint, LinearConstraint, dict)    new_constraint_types = all_constraint_types[:-1]    if constraints is None:        constraints = []    elif isinstance(constraints, all_constraint_types):        constraints = [constraints]    else:        constraints = list(constraints)  # ensure it's a mutable sequence    if meth in ['trust-constr', 'new']:        for i, con in enumerate(constraints):            if not isinstance(con, new_constraint_types):                constraints[i] = old_constraint_to_new(i, con)    else:        # iterate over copy, changing original        for i, con in enumerate(list(constraints)):            if isinstance(con, new_constraint_types):                old_constraints = new_constraint_to_old(con, x0)                constraints[i] = old_constraints[0]                constraints.extend(old_constraints[1:])  # appends 1 if present    return constraintsdef _optimize_result_for_equal_bounds(        fun, bounds, method, args=(), constraints=()):    """    Provides a default OptimizeResult for when a bounded minimization method    has (lb == ub).all().    Parameters    ----------    fun: callable    bounds: Bounds    method: str    constraints: Constraint    """    success = True    message = 'All independent variables were fixed by bounds.'    # bounds is new-style    x0 = bounds.lb    if constraints:        message = ("All independent variables were fixed by bounds at values"                   " that satisfy the constraints.")        constraints = standardize_constraints(constraints, x0, 'new')    maxcv = 0    for c in constraints:        pc = PreparedConstraint(c, x0)        violation = pc.violation(x0)        if np.sum(violation):            maxcv = max(maxcv, np.max(violation))            success = False            message = (f"All independent variables were fixed by bounds, but "                       f"the independent variables do not satisfy the "                       f"constraints exactly. (Maximum violation: {maxcv}).")    return OptimizeResult(        x=x0, fun=fun(x0, *args), success=success, message=message, nfev=1,        njev=0, nhev=0,    )
 |