123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249 |
- """The adaptation of Trust Region Reflective algorithm for a linear
- least-squares problem."""
- import numpy as np
- from numpy.linalg import norm
- from scipy.linalg import qr, solve_triangular
- from scipy.sparse.linalg import lsmr
- from scipy.optimize import OptimizeResult
- from .givens_elimination import givens_elimination
- from .common import (
- EPS, step_size_to_bound, find_active_constraints, in_bounds,
- make_strictly_feasible, build_quadratic_1d, evaluate_quadratic,
- minimize_quadratic_1d, CL_scaling_vector, reflective_transformation,
- print_header_linear, print_iteration_linear, compute_grad,
- regularized_lsq_operator, right_multiplied_operator)
- def regularized_lsq_with_qr(m, n, R, QTb, perm, diag, copy_R=True):
- """Solve regularized least squares using information from QR-decomposition.
- The initial problem is to solve the following system in a least-squares
- sense::
- A x = b
- D x = 0
- where D is diagonal matrix. The method is based on QR decomposition
- of the form A P = Q R, where P is a column permutation matrix, Q is an
- orthogonal matrix and R is an upper triangular matrix.
- Parameters
- ----------
- m, n : int
- Initial shape of A.
- R : ndarray, shape (n, n)
- Upper triangular matrix from QR decomposition of A.
- QTb : ndarray, shape (n,)
- First n components of Q^T b.
- perm : ndarray, shape (n,)
- Array defining column permutation of A, such that ith column of
- P is perm[i]-th column of identity matrix.
- diag : ndarray, shape (n,)
- Array containing diagonal elements of D.
- Returns
- -------
- x : ndarray, shape (n,)
- Found least-squares solution.
- """
- if copy_R:
- R = R.copy()
- v = QTb.copy()
- givens_elimination(R, v, diag[perm])
- abs_diag_R = np.abs(np.diag(R))
- threshold = EPS * max(m, n) * np.max(abs_diag_R)
- nns, = np.nonzero(abs_diag_R > threshold)
- R = R[np.ix_(nns, nns)]
- v = v[nns]
- x = np.zeros(n)
- x[perm[nns]] = solve_triangular(R, v)
- return x
- def backtracking(A, g, x, p, theta, p_dot_g, lb, ub):
- """Find an appropriate step size using backtracking line search."""
- alpha = 1
- while True:
- x_new, _ = reflective_transformation(x + alpha * p, lb, ub)
- step = x_new - x
- cost_change = -evaluate_quadratic(A, g, step)
- if cost_change > -0.1 * alpha * p_dot_g:
- break
- alpha *= 0.5
- active = find_active_constraints(x_new, lb, ub)
- if np.any(active != 0):
- x_new, _ = reflective_transformation(x + theta * alpha * p, lb, ub)
- x_new = make_strictly_feasible(x_new, lb, ub, rstep=0)
- step = x_new - x
- cost_change = -evaluate_quadratic(A, g, step)
- return x, step, cost_change
- def select_step(x, A_h, g_h, c_h, p, p_h, d, lb, ub, theta):
- """Select the best step according to Trust Region Reflective algorithm."""
- if in_bounds(x + p, lb, ub):
- return p
- p_stride, hits = step_size_to_bound(x, p, lb, ub)
- r_h = np.copy(p_h)
- r_h[hits.astype(bool)] *= -1
- r = d * r_h
- # Restrict step, such that it hits the bound.
- p *= p_stride
- p_h *= p_stride
- x_on_bound = x + p
- # Find the step size along reflected direction.
- r_stride_u, _ = step_size_to_bound(x_on_bound, r, lb, ub)
- # Stay interior.
- r_stride_l = (1 - theta) * r_stride_u
- r_stride_u *= theta
- if r_stride_u > 0:
- a, b, c = build_quadratic_1d(A_h, g_h, r_h, s0=p_h, diag=c_h)
- r_stride, r_value = minimize_quadratic_1d(
- a, b, r_stride_l, r_stride_u, c=c)
- r_h = p_h + r_h * r_stride
- r = d * r_h
- else:
- r_value = np.inf
- # Now correct p_h to make it strictly interior.
- p_h *= theta
- p *= theta
- p_value = evaluate_quadratic(A_h, g_h, p_h, diag=c_h)
- ag_h = -g_h
- ag = d * ag_h
- ag_stride_u, _ = step_size_to_bound(x, ag, lb, ub)
- ag_stride_u *= theta
- a, b = build_quadratic_1d(A_h, g_h, ag_h, diag=c_h)
- ag_stride, ag_value = minimize_quadratic_1d(a, b, 0, ag_stride_u)
- ag *= ag_stride
- if p_value < r_value and p_value < ag_value:
- return p
- elif r_value < p_value and r_value < ag_value:
- return r
- else:
- return ag
- def trf_linear(A, b, x_lsq, lb, ub, tol, lsq_solver, lsmr_tol,
- max_iter, verbose, *, lsmr_maxiter=None):
- m, n = A.shape
- x, _ = reflective_transformation(x_lsq, lb, ub)
- x = make_strictly_feasible(x, lb, ub, rstep=0.1)
- if lsq_solver == 'exact':
- QT, R, perm = qr(A, mode='economic', pivoting=True)
- QT = QT.T
- if m < n:
- R = np.vstack((R, np.zeros((n - m, n))))
- QTr = np.zeros(n)
- k = min(m, n)
- elif lsq_solver == 'lsmr':
- r_aug = np.zeros(m + n)
- auto_lsmr_tol = False
- if lsmr_tol is None:
- lsmr_tol = 1e-2 * tol
- elif lsmr_tol == 'auto':
- auto_lsmr_tol = True
- r = A.dot(x) - b
- g = compute_grad(A, r)
- cost = 0.5 * np.dot(r, r)
- initial_cost = cost
- termination_status = None
- step_norm = None
- cost_change = None
- if max_iter is None:
- max_iter = 100
- if verbose == 2:
- print_header_linear()
- for iteration in range(max_iter):
- v, dv = CL_scaling_vector(x, g, lb, ub)
- g_scaled = g * v
- g_norm = norm(g_scaled, ord=np.inf)
- if g_norm < tol:
- termination_status = 1
- if verbose == 2:
- print_iteration_linear(iteration, cost, cost_change,
- step_norm, g_norm)
- if termination_status is not None:
- break
- diag_h = g * dv
- diag_root_h = diag_h ** 0.5
- d = v ** 0.5
- g_h = d * g
- A_h = right_multiplied_operator(A, d)
- if lsq_solver == 'exact':
- QTr[:k] = QT.dot(r)
- p_h = -regularized_lsq_with_qr(m, n, R * d[perm], QTr, perm,
- diag_root_h, copy_R=False)
- elif lsq_solver == 'lsmr':
- lsmr_op = regularized_lsq_operator(A_h, diag_root_h)
- r_aug[:m] = r
- if auto_lsmr_tol:
- eta = 1e-2 * min(0.5, g_norm)
- lsmr_tol = max(EPS, min(0.1, eta * g_norm))
- p_h = -lsmr(lsmr_op, r_aug, maxiter=lsmr_maxiter,
- atol=lsmr_tol, btol=lsmr_tol)[0]
- p = d * p_h
- p_dot_g = np.dot(p, g)
- if p_dot_g > 0:
- termination_status = -1
- theta = 1 - min(0.005, g_norm)
- step = select_step(x, A_h, g_h, diag_h, p, p_h, d, lb, ub, theta)
- cost_change = -evaluate_quadratic(A, g, step)
- # Perhaps almost never executed, the idea is that `p` is descent
- # direction thus we must find acceptable cost decrease using simple
- # "backtracking", otherwise the algorithm's logic would break.
- if cost_change < 0:
- x, step, cost_change = backtracking(
- A, g, x, p, theta, p_dot_g, lb, ub)
- else:
- x = make_strictly_feasible(x + step, lb, ub, rstep=0)
- step_norm = norm(step)
- r = A.dot(x) - b
- g = compute_grad(A, r)
- if cost_change < tol * cost:
- termination_status = 2
- cost = 0.5 * np.dot(r, r)
- if termination_status is None:
- termination_status = 0
- active_mask = find_active_constraints(x, lb, ub, rtol=tol)
- return OptimizeResult(
- x=x, fun=r, cost=cost, optimality=g_norm, active_mask=active_mask,
- nit=iteration + 1, status=termination_status,
- initial_cost=initial_cost)
|