123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494 |
- """
- Functions
- ---------
- .. autosummary::
- :toctree: generated/
- fmin_l_bfgs_b
- """
- ## License for the Python wrapper
- ## ==============================
- ## Copyright (c) 2004 David M. Cooke <cookedm@physics.mcmaster.ca>
- ## Permission is hereby granted, free of charge, to any person obtaining a
- ## copy of this software and associated documentation files (the "Software"),
- ## to deal in the Software without restriction, including without limitation
- ## the rights to use, copy, modify, merge, publish, distribute, sublicense,
- ## and/or sell copies of the Software, and to permit persons to whom the
- ## Software is furnished to do so, subject to the following conditions:
- ## The above copyright notice and this permission notice shall be included in
- ## all copies or substantial portions of the Software.
- ## THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- ## IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- ## FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- ## AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- ## LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
- ## FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
- ## DEALINGS IN THE SOFTWARE.
- ## Modifications by Travis Oliphant and Enthought, Inc. for inclusion in SciPy
- import numpy as np
- from numpy import array, asarray, float64, zeros
- from . import _lbfgsb
- from ._optimize import (MemoizeJac, OptimizeResult,
- _check_unknown_options, _prepare_scalar_function)
- from ._constraints import old_bound_to_new
- from scipy.sparse.linalg import LinearOperator
- __all__ = ['fmin_l_bfgs_b', 'LbfgsInvHessProduct']
- def fmin_l_bfgs_b(func, x0, fprime=None, args=(),
- approx_grad=0,
- bounds=None, m=10, factr=1e7, pgtol=1e-5,
- epsilon=1e-8,
- iprint=-1, maxfun=15000, maxiter=15000, disp=None,
- callback=None, maxls=20):
- """
- Minimize a function func using the L-BFGS-B algorithm.
- Parameters
- ----------
- func : callable f(x,*args)
- Function to minimize.
- x0 : ndarray
- Initial guess.
- fprime : callable fprime(x,*args), optional
- The gradient of `func`. If None, then `func` returns the function
- value and the gradient (``f, g = func(x, *args)``), unless
- `approx_grad` is True in which case `func` returns only ``f``.
- args : sequence, optional
- Arguments to pass to `func` and `fprime`.
- approx_grad : bool, optional
- Whether to approximate the gradient numerically (in which case
- `func` returns only the function value).
- bounds : list, optional
- ``(min, max)`` pairs for each element in ``x``, defining
- the bounds on that parameter. Use None or +-inf for one of ``min`` or
- ``max`` when there is no bound in that direction.
- m : int, optional
- The maximum number of variable metric corrections
- used to define the limited memory matrix. (The limited memory BFGS
- method does not store the full hessian but uses this many terms in an
- approximation to it.)
- factr : float, optional
- The iteration stops when
- ``(f^k - f^{k+1})/max{|f^k|,|f^{k+1}|,1} <= factr * eps``,
- where ``eps`` is the machine precision, which is automatically
- generated by the code. Typical values for `factr` are: 1e12 for
- low accuracy; 1e7 for moderate accuracy; 10.0 for extremely
- high accuracy. See Notes for relationship to `ftol`, which is exposed
- (instead of `factr`) by the `scipy.optimize.minimize` interface to
- L-BFGS-B.
- pgtol : float, optional
- The iteration will stop when
- ``max{|proj g_i | i = 1, ..., n} <= pgtol``
- where ``pg_i`` is the i-th component of the projected gradient.
- epsilon : float, optional
- Step size used when `approx_grad` is True, for numerically
- calculating the gradient
- iprint : int, optional
- Controls the frequency of output. ``iprint < 0`` means no output;
- ``iprint = 0`` print only one line at the last iteration;
- ``0 < iprint < 99`` print also f and ``|proj g|`` every iprint iterations;
- ``iprint = 99`` print details of every iteration except n-vectors;
- ``iprint = 100`` print also the changes of active set and final x;
- ``iprint > 100`` print details of every iteration including x and g.
- disp : int, optional
- If zero, then no output. If a positive number, then this over-rides
- `iprint` (i.e., `iprint` gets the value of `disp`).
- maxfun : int, optional
- Maximum number of function evaluations. Note that this function
- may violate the limit because of evaluating gradients by numerical
- differentiation.
- maxiter : int, optional
- Maximum number of iterations.
- callback : callable, optional
- Called after each iteration, as ``callback(xk)``, where ``xk`` is the
- current parameter vector.
- maxls : int, optional
- Maximum number of line search steps (per iteration). Default is 20.
- Returns
- -------
- x : array_like
- Estimated position of the minimum.
- f : float
- Value of `func` at the minimum.
- d : dict
- Information dictionary.
- * d['warnflag'] is
- - 0 if converged,
- - 1 if too many function evaluations or too many iterations,
- - 2 if stopped for another reason, given in d['task']
- * d['grad'] is the gradient at the minimum (should be 0 ish)
- * d['funcalls'] is the number of function calls made.
- * d['nit'] is the number of iterations.
- See also
- --------
- minimize: Interface to minimization algorithms for multivariate
- functions. See the 'L-BFGS-B' `method` in particular. Note that the
- `ftol` option is made available via that interface, while `factr` is
- provided via this interface, where `factr` is the factor multiplying
- the default machine floating-point precision to arrive at `ftol`:
- ``ftol = factr * numpy.finfo(float).eps``.
- Notes
- -----
- License of L-BFGS-B (FORTRAN code):
- The version included here (in fortran code) is 3.0
- (released April 25, 2011). It was written by Ciyou Zhu, Richard Byrd,
- and Jorge Nocedal <nocedal@ece.nwu.edu>. It carries the following
- condition for use:
- This software is freely available, but we expect that all publications
- describing work using this software, or all commercial products using it,
- quote at least one of the references given below. This software is released
- under the BSD License.
- References
- ----------
- * R. H. Byrd, P. Lu and J. Nocedal. A Limited Memory Algorithm for Bound
- Constrained Optimization, (1995), SIAM Journal on Scientific and
- Statistical Computing, 16, 5, pp. 1190-1208.
- * C. Zhu, R. H. Byrd and J. Nocedal. L-BFGS-B: Algorithm 778: L-BFGS-B,
- FORTRAN routines for large scale bound constrained optimization (1997),
- ACM Transactions on Mathematical Software, 23, 4, pp. 550 - 560.
- * J.L. Morales and J. Nocedal. L-BFGS-B: Remark on Algorithm 778: L-BFGS-B,
- FORTRAN routines for large scale bound constrained optimization (2011),
- ACM Transactions on Mathematical Software, 38, 1.
- """
- # handle fprime/approx_grad
- if approx_grad:
- fun = func
- jac = None
- elif fprime is None:
- fun = MemoizeJac(func)
- jac = fun.derivative
- else:
- fun = func
- jac = fprime
- # build options
- opts = {'disp': disp,
- 'iprint': iprint,
- 'maxcor': m,
- 'ftol': factr * np.finfo(float).eps,
- 'gtol': pgtol,
- 'eps': epsilon,
- 'maxfun': maxfun,
- 'maxiter': maxiter,
- 'callback': callback,
- 'maxls': maxls}
- res = _minimize_lbfgsb(fun, x0, args=args, jac=jac, bounds=bounds,
- **opts)
- d = {'grad': res['jac'],
- 'task': res['message'],
- 'funcalls': res['nfev'],
- 'nit': res['nit'],
- 'warnflag': res['status']}
- f = res['fun']
- x = res['x']
- return x, f, d
- def _minimize_lbfgsb(fun, x0, args=(), jac=None, bounds=None,
- disp=None, maxcor=10, ftol=2.2204460492503131e-09,
- gtol=1e-5, eps=1e-8, maxfun=15000, maxiter=15000,
- iprint=-1, callback=None, maxls=20,
- finite_diff_rel_step=None, **unknown_options):
- """
- Minimize a scalar function of one or more variables using the L-BFGS-B
- algorithm.
- Options
- -------
- disp : None or int
- If `disp is None` (the default), then the supplied version of `iprint`
- is used. If `disp is not None`, then it overrides the supplied version
- of `iprint` with the behaviour you outlined.
- maxcor : int
- The maximum number of variable metric corrections used to
- define the limited memory matrix. (The limited memory BFGS
- method does not store the full hessian but uses this many terms
- in an approximation to it.)
- ftol : float
- The iteration stops when ``(f^k -
- f^{k+1})/max{|f^k|,|f^{k+1}|,1} <= ftol``.
- gtol : float
- The iteration will stop when ``max{|proj g_i | i = 1, ..., n}
- <= gtol`` where ``pg_i`` is the i-th component of the
- projected gradient.
- eps : float or ndarray
- If `jac is None` the absolute step size used for numerical
- approximation of the jacobian via forward differences.
- maxfun : int
- Maximum number of function evaluations. Note that this function
- may violate the limit because of evaluating gradients by numerical
- differentiation.
- maxiter : int
- Maximum number of iterations.
- iprint : int, optional
- Controls the frequency of output. ``iprint < 0`` means no output;
- ``iprint = 0`` print only one line at the last iteration;
- ``0 < iprint < 99`` print also f and ``|proj g|`` every iprint iterations;
- ``iprint = 99`` print details of every iteration except n-vectors;
- ``iprint = 100`` print also the changes of active set and final x;
- ``iprint > 100`` print details of every iteration including x and g.
- maxls : int, optional
- Maximum number of line search steps (per iteration). Default is 20.
- finite_diff_rel_step : None or array_like, optional
- If `jac in ['2-point', '3-point', 'cs']` the relative step size to
- use for numerical approximation of the jacobian. The absolute step
- size is computed as ``h = rel_step * sign(x) * max(1, abs(x))``,
- possibly adjusted to fit into the bounds. For ``method='3-point'``
- the sign of `h` is ignored. If None (default) then step is selected
- automatically.
- Notes
- -----
- The option `ftol` is exposed via the `scipy.optimize.minimize` interface,
- but calling `scipy.optimize.fmin_l_bfgs_b` directly exposes `factr`. The
- relationship between the two is ``ftol = factr * numpy.finfo(float).eps``.
- I.e., `factr` multiplies the default machine floating-point precision to
- arrive at `ftol`.
- """
- _check_unknown_options(unknown_options)
- m = maxcor
- pgtol = gtol
- factr = ftol / np.finfo(float).eps
- x0 = asarray(x0).ravel()
- n, = x0.shape
- if bounds is None:
- bounds = [(None, None)] * n
- if len(bounds) != n:
- raise ValueError('length of x0 != length of bounds')
- # unbounded variables must use None, not +-inf, for optimizer to work properly
- bounds = [(None if l == -np.inf else l, None if u == np.inf else u) for l, u in bounds]
- # LBFGSB is sent 'old-style' bounds, 'new-style' bounds are required by
- # approx_derivative and ScalarFunction
- new_bounds = old_bound_to_new(bounds)
- # check bounds
- if (new_bounds[0] > new_bounds[1]).any():
- raise ValueError("LBFGSB - one of the lower bounds is greater than an upper bound.")
- # initial vector must lie within the bounds. Otherwise ScalarFunction and
- # approx_derivative will cause problems
- x0 = np.clip(x0, new_bounds[0], new_bounds[1])
- if disp is not None:
- if disp == 0:
- iprint = -1
- else:
- iprint = disp
- sf = _prepare_scalar_function(fun, x0, jac=jac, args=args, epsilon=eps,
- bounds=new_bounds,
- finite_diff_rel_step=finite_diff_rel_step)
- func_and_grad = sf.fun_and_grad
- fortran_int = _lbfgsb.types.intvar.dtype
- nbd = zeros(n, fortran_int)
- low_bnd = zeros(n, float64)
- upper_bnd = zeros(n, float64)
- bounds_map = {(None, None): 0,
- (1, None): 1,
- (1, 1): 2,
- (None, 1): 3}
- for i in range(0, n):
- l, u = bounds[i]
- if l is not None:
- low_bnd[i] = l
- l = 1
- if u is not None:
- upper_bnd[i] = u
- u = 1
- nbd[i] = bounds_map[l, u]
- if not maxls > 0:
- raise ValueError('maxls must be positive.')
- x = array(x0, float64)
- f = array(0.0, float64)
- g = zeros((n,), float64)
- wa = zeros(2*m*n + 5*n + 11*m*m + 8*m, float64)
- iwa = zeros(3*n, fortran_int)
- task = zeros(1, 'S60')
- csave = zeros(1, 'S60')
- lsave = zeros(4, fortran_int)
- isave = zeros(44, fortran_int)
- dsave = zeros(29, float64)
- task[:] = 'START'
- n_iterations = 0
- while 1:
- # x, f, g, wa, iwa, task, csave, lsave, isave, dsave = \
- _lbfgsb.setulb(m, x, low_bnd, upper_bnd, nbd, f, g, factr,
- pgtol, wa, iwa, task, iprint, csave, lsave,
- isave, dsave, maxls)
- task_str = task.tobytes()
- if task_str.startswith(b'FG'):
- # The minimization routine wants f and g at the current x.
- # Note that interruptions due to maxfun are postponed
- # until the completion of the current minimization iteration.
- # Overwrite f and g:
- f, g = func_and_grad(x)
- elif task_str.startswith(b'NEW_X'):
- # new iteration
- n_iterations += 1
- if callback is not None:
- callback(np.copy(x))
- if n_iterations >= maxiter:
- task[:] = 'STOP: TOTAL NO. of ITERATIONS REACHED LIMIT'
- elif sf.nfev > maxfun:
- task[:] = ('STOP: TOTAL NO. of f AND g EVALUATIONS '
- 'EXCEEDS LIMIT')
- else:
- break
- task_str = task.tobytes().strip(b'\x00').strip()
- if task_str.startswith(b'CONV'):
- warnflag = 0
- elif sf.nfev > maxfun or n_iterations >= maxiter:
- warnflag = 1
- else:
- warnflag = 2
- # These two portions of the workspace are described in the mainlb
- # subroutine in lbfgsb.f. See line 363.
- s = wa[0: m*n].reshape(m, n)
- y = wa[m*n: 2*m*n].reshape(m, n)
- # See lbfgsb.f line 160 for this portion of the workspace.
- # isave(31) = the total number of BFGS updates prior the current iteration;
- n_bfgs_updates = isave[30]
- n_corrs = min(n_bfgs_updates, maxcor)
- hess_inv = LbfgsInvHessProduct(s[:n_corrs], y[:n_corrs])
- task_str = task_str.decode()
- return OptimizeResult(fun=f, jac=g, nfev=sf.nfev,
- njev=sf.ngev,
- nit=n_iterations, status=warnflag, message=task_str,
- x=x, success=(warnflag == 0), hess_inv=hess_inv)
- class LbfgsInvHessProduct(LinearOperator):
- """Linear operator for the L-BFGS approximate inverse Hessian.
- This operator computes the product of a vector with the approximate inverse
- of the Hessian of the objective function, using the L-BFGS limited
- memory approximation to the inverse Hessian, accumulated during the
- optimization.
- Objects of this class implement the ``scipy.sparse.linalg.LinearOperator``
- interface.
- Parameters
- ----------
- sk : array_like, shape=(n_corr, n)
- Array of `n_corr` most recent updates to the solution vector.
- (See [1]).
- yk : array_like, shape=(n_corr, n)
- Array of `n_corr` most recent updates to the gradient. (See [1]).
- References
- ----------
- .. [1] Nocedal, Jorge. "Updating quasi-Newton matrices with limited
- storage." Mathematics of computation 35.151 (1980): 773-782.
- """
- def __init__(self, sk, yk):
- """Construct the operator."""
- if sk.shape != yk.shape or sk.ndim != 2:
- raise ValueError('sk and yk must have matching shape, (n_corrs, n)')
- n_corrs, n = sk.shape
- super().__init__(dtype=np.float64, shape=(n, n))
- self.sk = sk
- self.yk = yk
- self.n_corrs = n_corrs
- self.rho = 1 / np.einsum('ij,ij->i', sk, yk)
- def _matvec(self, x):
- """Efficient matrix-vector multiply with the BFGS matrices.
- This calculation is described in Section (4) of [1].
- Parameters
- ----------
- x : ndarray
- An array with shape (n,) or (n,1).
- Returns
- -------
- y : ndarray
- The matrix-vector product
- """
- s, y, n_corrs, rho = self.sk, self.yk, self.n_corrs, self.rho
- q = np.array(x, dtype=self.dtype, copy=True)
- if q.ndim == 2 and q.shape[1] == 1:
- q = q.reshape(-1)
- alpha = np.empty(n_corrs)
- for i in range(n_corrs-1, -1, -1):
- alpha[i] = rho[i] * np.dot(s[i], q)
- q = q - alpha[i]*y[i]
- r = q
- for i in range(n_corrs):
- beta = rho[i] * np.dot(y[i], r)
- r = r + s[i] * (alpha[i] - beta)
- return r
- def todense(self):
- """Return a dense array representation of this operator.
- Returns
- -------
- arr : ndarray, shape=(n, n)
- An array with the same shape and containing
- the same data represented by this `LinearOperator`.
- """
- s, y, n_corrs, rho = self.sk, self.yk, self.n_corrs, self.rho
- I = np.eye(*self.shape, dtype=self.dtype)
- Hk = I
- for i in range(n_corrs):
- A1 = I - s[i][:, np.newaxis] * y[i][np.newaxis, :] * rho[i]
- A2 = I - y[i][:, np.newaxis] * s[i][np.newaxis, :] * rho[i]
- Hk = np.dot(A1, np.dot(Hk, A2)) + (rho[i] * s[i][:, np.newaxis] *
- s[i][np.newaxis, :])
- return Hk
|