123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191 |
- from itertools import product, permutations
- import numpy as np
- from numpy.testing import assert_array_less, assert_allclose
- from pytest import raises as assert_raises
- from scipy.linalg import inv, eigh, norm
- from scipy.linalg import orthogonal_procrustes
- from scipy.sparse._sputils import matrix
- def test_orthogonal_procrustes_ndim_too_large():
- np.random.seed(1234)
- A = np.random.randn(3, 4, 5)
- B = np.random.randn(3, 4, 5)
- assert_raises(ValueError, orthogonal_procrustes, A, B)
- def test_orthogonal_procrustes_ndim_too_small():
- np.random.seed(1234)
- A = np.random.randn(3)
- B = np.random.randn(3)
- assert_raises(ValueError, orthogonal_procrustes, A, B)
- def test_orthogonal_procrustes_shape_mismatch():
- np.random.seed(1234)
- shapes = ((3, 3), (3, 4), (4, 3), (4, 4))
- for a, b in permutations(shapes, 2):
- A = np.random.randn(*a)
- B = np.random.randn(*b)
- assert_raises(ValueError, orthogonal_procrustes, A, B)
- def test_orthogonal_procrustes_checkfinite_exception():
- np.random.seed(1234)
- m, n = 2, 3
- A_good = np.random.randn(m, n)
- B_good = np.random.randn(m, n)
- for bad_value in np.inf, -np.inf, np.nan:
- A_bad = A_good.copy()
- A_bad[1, 2] = bad_value
- B_bad = B_good.copy()
- B_bad[1, 2] = bad_value
- for A, B in ((A_good, B_bad), (A_bad, B_good), (A_bad, B_bad)):
- assert_raises(ValueError, orthogonal_procrustes, A, B)
- def test_orthogonal_procrustes_scale_invariance():
- np.random.seed(1234)
- m, n = 4, 3
- for i in range(3):
- A_orig = np.random.randn(m, n)
- B_orig = np.random.randn(m, n)
- R_orig, s = orthogonal_procrustes(A_orig, B_orig)
- for A_scale in np.square(np.random.randn(3)):
- for B_scale in np.square(np.random.randn(3)):
- R, s = orthogonal_procrustes(A_orig * A_scale, B_orig * B_scale)
- assert_allclose(R, R_orig)
- def test_orthogonal_procrustes_array_conversion():
- np.random.seed(1234)
- for m, n in ((6, 4), (4, 4), (4, 6)):
- A_arr = np.random.randn(m, n)
- B_arr = np.random.randn(m, n)
- As = (A_arr, A_arr.tolist(), matrix(A_arr))
- Bs = (B_arr, B_arr.tolist(), matrix(B_arr))
- R_arr, s = orthogonal_procrustes(A_arr, B_arr)
- AR_arr = A_arr.dot(R_arr)
- for A, B in product(As, Bs):
- R, s = orthogonal_procrustes(A, B)
- AR = A_arr.dot(R)
- assert_allclose(AR, AR_arr)
- def test_orthogonal_procrustes():
- np.random.seed(1234)
- for m, n in ((6, 4), (4, 4), (4, 6)):
- # Sample a random target matrix.
- B = np.random.randn(m, n)
- # Sample a random orthogonal matrix
- # by computing eigh of a sampled symmetric matrix.
- X = np.random.randn(n, n)
- w, V = eigh(X.T + X)
- assert_allclose(inv(V), V.T)
- # Compute a matrix with a known orthogonal transformation that gives B.
- A = np.dot(B, V.T)
- # Check that an orthogonal transformation from A to B can be recovered.
- R, s = orthogonal_procrustes(A, B)
- assert_allclose(inv(R), R.T)
- assert_allclose(A.dot(R), B)
- # Create a perturbed input matrix.
- A_perturbed = A + 1e-2 * np.random.randn(m, n)
- # Check that the orthogonal procrustes function can find an orthogonal
- # transformation that is better than the orthogonal transformation
- # computed from the original input matrix.
- R_prime, s = orthogonal_procrustes(A_perturbed, B)
- assert_allclose(inv(R_prime), R_prime.T)
- # Compute the naive and optimal transformations of the perturbed input.
- naive_approx = A_perturbed.dot(R)
- optim_approx = A_perturbed.dot(R_prime)
- # Compute the Frobenius norm errors of the matrix approximations.
- naive_approx_error = norm(naive_approx - B, ord='fro')
- optim_approx_error = norm(optim_approx - B, ord='fro')
- # Check that the orthogonal Procrustes approximation is better.
- assert_array_less(optim_approx_error, naive_approx_error)
- def _centered(A):
- mu = A.mean(axis=0)
- return A - mu, mu
- def test_orthogonal_procrustes_exact_example():
- # Check a small application.
- # It uses translation, scaling, reflection, and rotation.
- #
- # |
- # a b |
- # |
- # d c | w
- # |
- # --------+--- x ----- z ---
- # |
- # | y
- # |
- #
- A_orig = np.array([[-3, 3], [-2, 3], [-2, 2], [-3, 2]], dtype=float)
- B_orig = np.array([[3, 2], [1, 0], [3, -2], [5, 0]], dtype=float)
- A, A_mu = _centered(A_orig)
- B, B_mu = _centered(B_orig)
- R, s = orthogonal_procrustes(A, B)
- scale = s / np.square(norm(A))
- B_approx = scale * np.dot(A, R) + B_mu
- assert_allclose(B_approx, B_orig, atol=1e-8)
- def test_orthogonal_procrustes_stretched_example():
- # Try again with a target with a stretched y axis.
- A_orig = np.array([[-3, 3], [-2, 3], [-2, 2], [-3, 2]], dtype=float)
- B_orig = np.array([[3, 40], [1, 0], [3, -40], [5, 0]], dtype=float)
- A, A_mu = _centered(A_orig)
- B, B_mu = _centered(B_orig)
- R, s = orthogonal_procrustes(A, B)
- scale = s / np.square(norm(A))
- B_approx = scale * np.dot(A, R) + B_mu
- expected = np.array([[3, 21], [-18, 0], [3, -21], [24, 0]], dtype=float)
- assert_allclose(B_approx, expected, atol=1e-8)
- # Check disparity symmetry.
- expected_disparity = 0.4501246882793018
- AB_disparity = np.square(norm(B_approx - B_orig) / norm(B))
- assert_allclose(AB_disparity, expected_disparity)
- R, s = orthogonal_procrustes(B, A)
- scale = s / np.square(norm(B))
- A_approx = scale * np.dot(B, R) + A_mu
- BA_disparity = np.square(norm(A_approx - A_orig) / norm(A))
- assert_allclose(BA_disparity, expected_disparity)
- def test_orthogonal_procrustes_skbio_example():
- # This transformation is also exact.
- # It uses translation, scaling, and reflection.
- #
- # |
- # | a
- # | b
- # | c d
- # --+---------
- # |
- # | w
- # |
- # | x
- # |
- # | z y
- # |
- #
- A_orig = np.array([[4, -2], [4, -4], [4, -6], [2, -6]], dtype=float)
- B_orig = np.array([[1, 3], [1, 2], [1, 1], [2, 1]], dtype=float)
- B_standardized = np.array([
- [-0.13363062, 0.6681531],
- [-0.13363062, 0.13363062],
- [-0.13363062, -0.40089186],
- [0.40089186, -0.40089186]])
- A, A_mu = _centered(A_orig)
- B, B_mu = _centered(B_orig)
- R, s = orthogonal_procrustes(A, B)
- scale = s / np.square(norm(A))
- B_approx = scale * np.dot(A, R) + B_mu
- assert_allclose(B_approx, B_orig)
- assert_allclose(B / norm(B), B_standardized)
|