123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282 |
- #
- # Created by: Pearu Peterson, September 2002
- #
- import sys
- from functools import reduce
- from numpy.testing import (assert_equal, assert_array_almost_equal, assert_,
- assert_allclose, assert_almost_equal,
- assert_array_equal)
- import pytest
- from pytest import raises as assert_raises
- import numpy as np
- from numpy import (eye, ones, zeros, zeros_like, triu, tril, tril_indices,
- triu_indices)
- from numpy.random import rand, randint, seed
- from scipy.linalg import (_flapack as flapack, lapack, inv, svd, cholesky,
- solve, ldl, norm, block_diag, qr, eigh)
- from scipy.linalg.lapack import _compute_lwork
- from scipy.stats import ortho_group, unitary_group
- import scipy.sparse as sps
- try:
- from scipy.linalg import _clapack as clapack
- except ImportError:
- clapack = None
- from scipy.linalg.lapack import get_lapack_funcs
- from scipy.linalg.blas import get_blas_funcs
- REAL_DTYPES = [np.float32, np.float64]
- COMPLEX_DTYPES = [np.complex64, np.complex128]
- DTYPES = REAL_DTYPES + COMPLEX_DTYPES
- def generate_random_dtype_array(shape, dtype):
- # generates a random matrix of desired data type of shape
- if dtype in COMPLEX_DTYPES:
- return (np.random.rand(*shape)
- + np.random.rand(*shape)*1.0j).astype(dtype)
- return np.random.rand(*shape).astype(dtype)
- def test_lapack_documented():
- """Test that all entries are in the doc."""
- if lapack.__doc__ is None: # just in case there is a python -OO
- pytest.skip('lapack.__doc__ is None')
- names = set(lapack.__doc__.split())
- ignore_list = set([
- 'absolute_import', 'clapack', 'division', 'find_best_lapack_type',
- 'flapack', 'print_function', 'HAS_ILP64',
- ])
- missing = list()
- for name in dir(lapack):
- if (not name.startswith('_') and name not in ignore_list and
- name not in names):
- missing.append(name)
- assert missing == [], 'Name(s) missing from lapack.__doc__ or ignore_list'
- class TestFlapackSimple:
- def test_gebal(self):
- a = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
- a1 = [[1, 0, 0, 3e-4],
- [4, 0, 0, 2e-3],
- [7, 1, 0, 0],
- [0, 1, 0, 0]]
- for p in 'sdzc':
- f = getattr(flapack, p+'gebal', None)
- if f is None:
- continue
- ba, lo, hi, pivscale, info = f(a)
- assert_(not info, repr(info))
- assert_array_almost_equal(ba, a)
- assert_equal((lo, hi), (0, len(a[0])-1))
- assert_array_almost_equal(pivscale, np.ones(len(a)))
- ba, lo, hi, pivscale, info = f(a1, permute=1, scale=1)
- assert_(not info, repr(info))
- # print(a1)
- # print(ba, lo, hi, pivscale)
- def test_gehrd(self):
- a = [[-149, -50, -154],
- [537, 180, 546],
- [-27, -9, -25]]
- for p in 'd':
- f = getattr(flapack, p+'gehrd', None)
- if f is None:
- continue
- ht, tau, info = f(a)
- assert_(not info, repr(info))
- def test_trsyl(self):
- a = np.array([[1, 2], [0, 4]])
- b = np.array([[5, 6], [0, 8]])
- c = np.array([[9, 10], [11, 12]])
- trans = 'T'
- # Test single and double implementations, including most
- # of the options
- for dtype in 'fdFD':
- a1, b1, c1 = a.astype(dtype), b.astype(dtype), c.astype(dtype)
- trsyl, = get_lapack_funcs(('trsyl',), (a1,))
- if dtype.isupper(): # is complex dtype
- a1[0] += 1j
- trans = 'C'
- x, scale, info = trsyl(a1, b1, c1)
- assert_array_almost_equal(np.dot(a1, x) + np.dot(x, b1),
- scale * c1)
- x, scale, info = trsyl(a1, b1, c1, trana=trans, tranb=trans)
- assert_array_almost_equal(
- np.dot(a1.conjugate().T, x) + np.dot(x, b1.conjugate().T),
- scale * c1, decimal=4)
- x, scale, info = trsyl(a1, b1, c1, isgn=-1)
- assert_array_almost_equal(np.dot(a1, x) - np.dot(x, b1),
- scale * c1, decimal=4)
- def test_lange(self):
- a = np.array([
- [-149, -50, -154],
- [537, 180, 546],
- [-27, -9, -25]])
- for dtype in 'fdFD':
- for norm_str in 'Mm1OoIiFfEe':
- a1 = a.astype(dtype)
- if dtype.isupper():
- # is complex dtype
- a1[0, 0] += 1j
- lange, = get_lapack_funcs(('lange',), (a1,))
- value = lange(norm_str, a1)
- if norm_str in 'FfEe':
- if dtype in 'Ff':
- decimal = 3
- else:
- decimal = 7
- ref = np.sqrt(np.sum(np.square(np.abs(a1))))
- assert_almost_equal(value, ref, decimal)
- else:
- if norm_str in 'Mm':
- ref = np.max(np.abs(a1))
- elif norm_str in '1Oo':
- ref = np.max(np.sum(np.abs(a1), axis=0))
- elif norm_str in 'Ii':
- ref = np.max(np.sum(np.abs(a1), axis=1))
- assert_equal(value, ref)
- class TestLapack:
- def test_flapack(self):
- if hasattr(flapack, 'empty_module'):
- # flapack module is empty
- pass
- def test_clapack(self):
- if hasattr(clapack, 'empty_module'):
- # clapack module is empty
- pass
- class TestLeastSquaresSolvers:
- def test_gels(self):
- seed(1234)
- # Test fat/tall matrix argument handling - gh-issue #8329
- for ind, dtype in enumerate(DTYPES):
- m = 10
- n = 20
- nrhs = 1
- a1 = rand(m, n).astype(dtype)
- b1 = rand(n).astype(dtype)
- gls, glslw = get_lapack_funcs(('gels', 'gels_lwork'), dtype=dtype)
- # Request of sizes
- lwork = _compute_lwork(glslw, m, n, nrhs)
- _, _, info = gls(a1, b1, lwork=lwork)
- assert_(info >= 0)
- _, _, info = gls(a1, b1, trans='TTCC'[ind], lwork=lwork)
- assert_(info >= 0)
- for dtype in REAL_DTYPES:
- a1 = np.array([[1.0, 2.0],
- [4.0, 5.0],
- [7.0, 8.0]], dtype=dtype)
- b1 = np.array([16.0, 17.0, 20.0], dtype=dtype)
- gels, gels_lwork, geqrf = get_lapack_funcs(
- ('gels', 'gels_lwork', 'geqrf'), (a1, b1))
- m, n = a1.shape
- if len(b1.shape) == 2:
- nrhs = b1.shape[1]
- else:
- nrhs = 1
- # Request of sizes
- lwork = _compute_lwork(gels_lwork, m, n, nrhs)
- lqr, x, info = gels(a1, b1, lwork=lwork)
- assert_allclose(x[:-1], np.array([-14.333333333333323,
- 14.999999999999991],
- dtype=dtype),
- rtol=25*np.finfo(dtype).eps)
- lqr_truth, _, _, _ = geqrf(a1)
- assert_array_equal(lqr, lqr_truth)
- for dtype in COMPLEX_DTYPES:
- a1 = np.array([[1.0+4.0j, 2.0],
- [4.0+0.5j, 5.0-3.0j],
- [7.0-2.0j, 8.0+0.7j]], dtype=dtype)
- b1 = np.array([16.0, 17.0+2.0j, 20.0-4.0j], dtype=dtype)
- gels, gels_lwork, geqrf = get_lapack_funcs(
- ('gels', 'gels_lwork', 'geqrf'), (a1, b1))
- m, n = a1.shape
- if len(b1.shape) == 2:
- nrhs = b1.shape[1]
- else:
- nrhs = 1
- # Request of sizes
- lwork = _compute_lwork(gels_lwork, m, n, nrhs)
- lqr, x, info = gels(a1, b1, lwork=lwork)
- assert_allclose(x[:-1],
- np.array([1.161753632288328-1.901075709391912j,
- 1.735882340522193+1.521240901196909j],
- dtype=dtype), rtol=25*np.finfo(dtype).eps)
- lqr_truth, _, _, _ = geqrf(a1)
- assert_array_equal(lqr, lqr_truth)
- def test_gelsd(self):
- for dtype in REAL_DTYPES:
- a1 = np.array([[1.0, 2.0],
- [4.0, 5.0],
- [7.0, 8.0]], dtype=dtype)
- b1 = np.array([16.0, 17.0, 20.0], dtype=dtype)
- gelsd, gelsd_lwork = get_lapack_funcs(('gelsd', 'gelsd_lwork'),
- (a1, b1))
- m, n = a1.shape
- if len(b1.shape) == 2:
- nrhs = b1.shape[1]
- else:
- nrhs = 1
- # Request of sizes
- work, iwork, info = gelsd_lwork(m, n, nrhs, -1)
- lwork = int(np.real(work))
- iwork_size = iwork
- x, s, rank, info = gelsd(a1, b1, lwork, iwork_size,
- -1, False, False)
- assert_allclose(x[:-1], np.array([-14.333333333333323,
- 14.999999999999991],
- dtype=dtype),
- rtol=25*np.finfo(dtype).eps)
- assert_allclose(s, np.array([12.596017180511966,
- 0.583396253199685], dtype=dtype),
- rtol=25*np.finfo(dtype).eps)
- for dtype in COMPLEX_DTYPES:
- a1 = np.array([[1.0+4.0j, 2.0],
- [4.0+0.5j, 5.0-3.0j],
- [7.0-2.0j, 8.0+0.7j]], dtype=dtype)
- b1 = np.array([16.0, 17.0+2.0j, 20.0-4.0j], dtype=dtype)
- gelsd, gelsd_lwork = get_lapack_funcs(('gelsd', 'gelsd_lwork'),
- (a1, b1))
- m, n = a1.shape
- if len(b1.shape) == 2:
- nrhs = b1.shape[1]
- else:
- nrhs = 1
- # Request of sizes
- work, rwork, iwork, info = gelsd_lwork(m, n, nrhs, -1)
- lwork = int(np.real(work))
- rwork_size = int(rwork)
- iwork_size = iwork
- x, s, rank, info = gelsd(a1, b1, lwork, rwork_size, iwork_size,
- -1, False, False)
- assert_allclose(x[:-1],
- np.array([1.161753632288328-1.901075709391912j,
- 1.735882340522193+1.521240901196909j],
- dtype=dtype), rtol=25*np.finfo(dtype).eps)
- assert_allclose(s,
- np.array([13.035514762572043, 4.337666985231382],
- dtype=dtype), rtol=25*np.finfo(dtype).eps)
- def test_gelss(self):
- for dtype in REAL_DTYPES:
- a1 = np.array([[1.0, 2.0],
- [4.0, 5.0],
- [7.0, 8.0]], dtype=dtype)
- b1 = np.array([16.0, 17.0, 20.0], dtype=dtype)
- gelss, gelss_lwork = get_lapack_funcs(('gelss', 'gelss_lwork'),
- (a1, b1))
- m, n = a1.shape
- if len(b1.shape) == 2:
- nrhs = b1.shape[1]
- else:
- nrhs = 1
- # Request of sizes
- work, info = gelss_lwork(m, n, nrhs, -1)
- lwork = int(np.real(work))
- v, x, s, rank, work, info = gelss(a1, b1, -1, lwork, False, False)
- assert_allclose(x[:-1], np.array([-14.333333333333323,
- 14.999999999999991],
- dtype=dtype),
- rtol=25*np.finfo(dtype).eps)
- assert_allclose(s, np.array([12.596017180511966,
- 0.583396253199685], dtype=dtype),
- rtol=25*np.finfo(dtype).eps)
- for dtype in COMPLEX_DTYPES:
- a1 = np.array([[1.0+4.0j, 2.0],
- [4.0+0.5j, 5.0-3.0j],
- [7.0-2.0j, 8.0+0.7j]], dtype=dtype)
- b1 = np.array([16.0, 17.0+2.0j, 20.0-4.0j], dtype=dtype)
- gelss, gelss_lwork = get_lapack_funcs(('gelss', 'gelss_lwork'),
- (a1, b1))
- m, n = a1.shape
- if len(b1.shape) == 2:
- nrhs = b1.shape[1]
- else:
- nrhs = 1
- # Request of sizes
- work, info = gelss_lwork(m, n, nrhs, -1)
- lwork = int(np.real(work))
- v, x, s, rank, work, info = gelss(a1, b1, -1, lwork, False, False)
- assert_allclose(x[:-1],
- np.array([1.161753632288328-1.901075709391912j,
- 1.735882340522193+1.521240901196909j],
- dtype=dtype),
- rtol=25*np.finfo(dtype).eps)
- assert_allclose(s, np.array([13.035514762572043,
- 4.337666985231382], dtype=dtype),
- rtol=25*np.finfo(dtype).eps)
- def test_gelsy(self):
- for dtype in REAL_DTYPES:
- a1 = np.array([[1.0, 2.0],
- [4.0, 5.0],
- [7.0, 8.0]], dtype=dtype)
- b1 = np.array([16.0, 17.0, 20.0], dtype=dtype)
- gelsy, gelsy_lwork = get_lapack_funcs(('gelsy', 'gelss_lwork'),
- (a1, b1))
- m, n = a1.shape
- if len(b1.shape) == 2:
- nrhs = b1.shape[1]
- else:
- nrhs = 1
- # Request of sizes
- work, info = gelsy_lwork(m, n, nrhs, 10*np.finfo(dtype).eps)
- lwork = int(np.real(work))
- jptv = np.zeros((a1.shape[1], 1), dtype=np.int32)
- v, x, j, rank, info = gelsy(a1, b1, jptv, np.finfo(dtype).eps,
- lwork, False, False)
- assert_allclose(x[:-1], np.array([-14.333333333333323,
- 14.999999999999991],
- dtype=dtype),
- rtol=25*np.finfo(dtype).eps)
- for dtype in COMPLEX_DTYPES:
- a1 = np.array([[1.0+4.0j, 2.0],
- [4.0+0.5j, 5.0-3.0j],
- [7.0-2.0j, 8.0+0.7j]], dtype=dtype)
- b1 = np.array([16.0, 17.0+2.0j, 20.0-4.0j], dtype=dtype)
- gelsy, gelsy_lwork = get_lapack_funcs(('gelsy', 'gelss_lwork'),
- (a1, b1))
- m, n = a1.shape
- if len(b1.shape) == 2:
- nrhs = b1.shape[1]
- else:
- nrhs = 1
- # Request of sizes
- work, info = gelsy_lwork(m, n, nrhs, 10*np.finfo(dtype).eps)
- lwork = int(np.real(work))
- jptv = np.zeros((a1.shape[1], 1), dtype=np.int32)
- v, x, j, rank, info = gelsy(a1, b1, jptv, np.finfo(dtype).eps,
- lwork, False, False)
- assert_allclose(x[:-1],
- np.array([1.161753632288328-1.901075709391912j,
- 1.735882340522193+1.521240901196909j],
- dtype=dtype),
- rtol=25*np.finfo(dtype).eps)
- @pytest.mark.parametrize('dtype', DTYPES)
- @pytest.mark.parametrize('shape', [(3, 4), (5, 2), (2**18, 2**18)])
- def test_geqrf_lwork(dtype, shape):
- geqrf_lwork = get_lapack_funcs(('geqrf_lwork'), dtype=dtype)
- m, n = shape
- lwork, info = geqrf_lwork(m=m, n=n)
- assert_equal(info, 0)
- class TestRegression:
- def test_ticket_1645(self):
- # Check that RQ routines have correct lwork
- for dtype in DTYPES:
- a = np.zeros((300, 2), dtype=dtype)
- gerqf, = get_lapack_funcs(['gerqf'], [a])
- assert_raises(Exception, gerqf, a, lwork=2)
- rq, tau, work, info = gerqf(a)
- if dtype in REAL_DTYPES:
- orgrq, = get_lapack_funcs(['orgrq'], [a])
- assert_raises(Exception, orgrq, rq[-2:], tau, lwork=1)
- orgrq(rq[-2:], tau, lwork=2)
- elif dtype in COMPLEX_DTYPES:
- ungrq, = get_lapack_funcs(['ungrq'], [a])
- assert_raises(Exception, ungrq, rq[-2:], tau, lwork=1)
- ungrq(rq[-2:], tau, lwork=2)
- class TestDpotr:
- def test_gh_2691(self):
- # 'lower' argument of dportf/dpotri
- for lower in [True, False]:
- for clean in [True, False]:
- np.random.seed(42)
- x = np.random.normal(size=(3, 3))
- a = x.dot(x.T)
- dpotrf, dpotri = get_lapack_funcs(("potrf", "potri"), (a, ))
- c, info = dpotrf(a, lower, clean=clean)
- dpt = dpotri(c, lower)[0]
- if lower:
- assert_allclose(np.tril(dpt), np.tril(inv(a)))
- else:
- assert_allclose(np.triu(dpt), np.triu(inv(a)))
- class TestDlasd4:
- def test_sing_val_update(self):
- sigmas = np.array([4., 3., 2., 0])
- m_vec = np.array([3.12, 5.7, -4.8, -2.2])
- M = np.hstack((np.vstack((np.diag(sigmas[0:-1]),
- np.zeros((1, len(m_vec) - 1)))),
- m_vec[:, np.newaxis]))
- SM = svd(M, full_matrices=False, compute_uv=False, overwrite_a=False,
- check_finite=False)
- it_len = len(sigmas)
- sgm = np.concatenate((sigmas[::-1], [sigmas[0] + it_len*norm(m_vec)]))
- mvc = np.concatenate((m_vec[::-1], (0,)))
- lasd4 = get_lapack_funcs('lasd4', (sigmas,))
- roots = []
- for i in range(0, it_len):
- res = lasd4(i, sgm, mvc)
- roots.append(res[1])
- assert_((res[3] <= 0), "LAPACK root finding dlasd4 failed to find \
- the singular value %i" % i)
- roots = np.array(roots)[::-1]
- assert_((not np.any(np.isnan(roots)), "There are NaN roots"))
- assert_allclose(SM, roots, atol=100*np.finfo(np.float64).eps,
- rtol=100*np.finfo(np.float64).eps)
- class TestTbtrs:
- @pytest.mark.parametrize('dtype', DTYPES)
- def test_nag_example_f07vef_f07vsf(self, dtype):
- """Test real (f07vef) and complex (f07vsf) examples from NAG
- Examples available from:
- * https://www.nag.com/numeric/fl/nagdoc_latest/html/f07/f07vef.html
- * https://www.nag.com/numeric/fl/nagdoc_latest/html/f07/f07vsf.html
- """
- if dtype in REAL_DTYPES:
- ab = np.array([[-4.16, 4.78, 6.32, 0.16],
- [-2.25, 5.86, -4.82, 0]],
- dtype=dtype)
- b = np.array([[-16.64, -4.16],
- [-13.78, -16.59],
- [13.10, -4.94],
- [-14.14, -9.96]],
- dtype=dtype)
- x_out = np.array([[4, 1],
- [-1, -3],
- [3, 2],
- [2, -2]],
- dtype=dtype)
- elif dtype in COMPLEX_DTYPES:
- ab = np.array([[-1.94+4.43j, 4.12-4.27j, 0.43-2.66j, 0.44+0.1j],
- [-3.39+3.44j, -1.84+5.52j, 1.74 - 0.04j, 0],
- [1.62+3.68j, -2.77-1.93j, 0, 0]],
- dtype=dtype)
- b = np.array([[-8.86 - 3.88j, -24.09 - 5.27j],
- [-15.57 - 23.41j, -57.97 + 8.14j],
- [-7.63 + 22.78j, 19.09 - 29.51j],
- [-14.74 - 2.40j, 19.17 + 21.33j]],
- dtype=dtype)
- x_out = np.array([[2j, 1 + 5j],
- [1 - 3j, -7 - 2j],
- [-4.001887 - 4.988417j, 3.026830 + 4.003182j],
- [1.996158 - 1.045105j, -6.103357 - 8.986653j]],
- dtype=dtype)
- else:
- raise ValueError(f"Datatype {dtype} not understood.")
- tbtrs = get_lapack_funcs(('tbtrs'), dtype=dtype)
- x, info = tbtrs(ab=ab, b=b, uplo='L')
- assert_equal(info, 0)
- assert_allclose(x, x_out, rtol=0, atol=1e-5)
- @pytest.mark.parametrize('dtype,trans',
- [(dtype, trans)
- for dtype in DTYPES for trans in ['N', 'T', 'C']
- if not (trans == 'C' and dtype in REAL_DTYPES)])
- @pytest.mark.parametrize('uplo', ['U', 'L'])
- @pytest.mark.parametrize('diag', ['N', 'U'])
- def test_random_matrices(self, dtype, trans, uplo, diag):
- seed(1724)
- # n, nrhs, kd are used to specify A and b.
- # A is of shape n x n with kd super/sub-diagonals
- # b is of shape n x nrhs matrix
- n, nrhs, kd = 4, 3, 2
- tbtrs = get_lapack_funcs('tbtrs', dtype=dtype)
- is_upper = (uplo == 'U')
- ku = kd * is_upper
- kl = kd - ku
- # Construct the diagonal and kd super/sub diagonals of A with
- # the corresponding offsets.
- band_offsets = range(ku, -kl - 1, -1)
- band_widths = [n - abs(x) for x in band_offsets]
- bands = [generate_random_dtype_array((width,), dtype)
- for width in band_widths]
- if diag == 'U': # A must be unit triangular
- bands[ku] = np.ones(n, dtype=dtype)
- # Construct the diagonal banded matrix A from the bands and offsets.
- a = sps.diags(bands, band_offsets, format='dia')
- # Convert A into banded storage form
- ab = np.zeros((kd + 1, n), dtype)
- for row, k in enumerate(band_offsets):
- ab[row, max(k, 0):min(n+k, n)] = a.diagonal(k)
- # The RHS values.
- b = generate_random_dtype_array((n, nrhs), dtype)
- x, info = tbtrs(ab=ab, b=b, uplo=uplo, trans=trans, diag=diag)
- assert_equal(info, 0)
- if trans == 'N':
- assert_allclose(a @ x, b, rtol=5e-5)
- elif trans == 'T':
- assert_allclose(a.T @ x, b, rtol=5e-5)
- elif trans == 'C':
- assert_allclose(a.H @ x, b, rtol=5e-5)
- else:
- raise ValueError('Invalid trans argument')
- @pytest.mark.parametrize('uplo,trans,diag',
- [['U', 'N', 'Invalid'],
- ['U', 'Invalid', 'N'],
- ['Invalid', 'N', 'N']])
- def test_invalid_argument_raises_exception(self, uplo, trans, diag):
- """Test if invalid values of uplo, trans and diag raise exceptions"""
- # Argument checks occur independently of used datatype.
- # This mean we must not parameterize all available datatypes.
- tbtrs = get_lapack_funcs('tbtrs', dtype=np.float64)
- ab = rand(4, 2)
- b = rand(2, 4)
- assert_raises(Exception, tbtrs, ab, b, uplo, trans, diag)
- def test_zero_element_in_diagonal(self):
- """Test if a matrix with a zero diagonal element is singular
- If the i-th diagonal of A is zero, ?tbtrs should return `i` in `info`
- indicating the provided matrix is singular.
- Note that ?tbtrs requires the matrix A to be stored in banded form.
- In this form the diagonal corresponds to the last row."""
- ab = np.ones((3, 4), dtype=float)
- b = np.ones(4, dtype=float)
- tbtrs = get_lapack_funcs('tbtrs', dtype=float)
- ab[-1, 3] = 0
- _, info = tbtrs(ab=ab, b=b, uplo='U')
- assert_equal(info, 4)
- @pytest.mark.parametrize('ldab,n,ldb,nrhs', [
- (5, 5, 0, 5),
- (5, 5, 3, 5)
- ])
- def test_invalid_matrix_shapes(self, ldab, n, ldb, nrhs):
- """Test ?tbtrs fails correctly if shapes are invalid."""
- ab = np.ones((ldab, n), dtype=float)
- b = np.ones((ldb, nrhs), dtype=float)
- tbtrs = get_lapack_funcs('tbtrs', dtype=float)
- assert_raises(Exception, tbtrs, ab, b)
- def test_lartg():
- for dtype in 'fdFD':
- lartg = get_lapack_funcs('lartg', dtype=dtype)
- f = np.array(3, dtype)
- g = np.array(4, dtype)
- if np.iscomplexobj(g):
- g *= 1j
- cs, sn, r = lartg(f, g)
- assert_allclose(cs, 3.0/5.0)
- assert_allclose(r, 5.0)
- if np.iscomplexobj(g):
- assert_allclose(sn, -4.0j/5.0)
- assert_(type(r) == complex)
- assert_(type(cs) == float)
- else:
- assert_allclose(sn, 4.0/5.0)
- def test_rot():
- # srot, drot from blas and crot and zrot from lapack.
- for dtype in 'fdFD':
- c = 0.6
- s = 0.8
- u = np.full(4, 3, dtype)
- v = np.full(4, 4, dtype)
- atol = 10**-(np.finfo(dtype).precision-1)
- if dtype in 'fd':
- rot = get_blas_funcs('rot', dtype=dtype)
- f = 4
- else:
- rot = get_lapack_funcs('rot', dtype=dtype)
- s *= -1j
- v *= 1j
- f = 4j
- assert_allclose(rot(u, v, c, s), [[5, 5, 5, 5],
- [0, 0, 0, 0]], atol=atol)
- assert_allclose(rot(u, v, c, s, n=2), [[5, 5, 3, 3],
- [0, 0, f, f]], atol=atol)
- assert_allclose(rot(u, v, c, s, offx=2, offy=2),
- [[3, 3, 5, 5], [f, f, 0, 0]], atol=atol)
- assert_allclose(rot(u, v, c, s, incx=2, offy=2, n=2),
- [[5, 3, 5, 3], [f, f, 0, 0]], atol=atol)
- assert_allclose(rot(u, v, c, s, offx=2, incy=2, n=2),
- [[3, 3, 5, 5], [0, f, 0, f]], atol=atol)
- assert_allclose(rot(u, v, c, s, offx=2, incx=2, offy=2, incy=2, n=1),
- [[3, 3, 5, 3], [f, f, 0, f]], atol=atol)
- assert_allclose(rot(u, v, c, s, incx=-2, incy=-2, n=2),
- [[5, 3, 5, 3], [0, f, 0, f]], atol=atol)
- a, b = rot(u, v, c, s, overwrite_x=1, overwrite_y=1)
- assert_(a is u)
- assert_(b is v)
- assert_allclose(a, [5, 5, 5, 5], atol=atol)
- assert_allclose(b, [0, 0, 0, 0], atol=atol)
- def test_larfg_larf():
- np.random.seed(1234)
- a0 = np.random.random((4, 4))
- a0 = a0.T.dot(a0)
- a0j = np.random.random((4, 4)) + 1j*np.random.random((4, 4))
- a0j = a0j.T.conj().dot(a0j)
- # our test here will be to do one step of reducing a hermetian matrix to
- # tridiagonal form using householder transforms.
- for dtype in 'fdFD':
- larfg, larf = get_lapack_funcs(['larfg', 'larf'], dtype=dtype)
- if dtype in 'FD':
- a = a0j.copy()
- else:
- a = a0.copy()
- # generate a householder transform to clear a[2:,0]
- alpha, x, tau = larfg(a.shape[0]-1, a[1, 0], a[2:, 0])
- # create expected output
- expected = np.zeros_like(a[:, 0])
- expected[0] = a[0, 0]
- expected[1] = alpha
- # assemble householder vector
- v = np.zeros_like(a[1:, 0])
- v[0] = 1.0
- v[1:] = x
- # apply transform from the left
- a[1:, :] = larf(v, tau.conjugate(), a[1:, :], np.zeros(a.shape[1]))
- # apply transform from the right
- a[:, 1:] = larf(v, tau, a[:, 1:], np.zeros(a.shape[0]), side='R')
- assert_allclose(a[:, 0], expected, atol=1e-5)
- assert_allclose(a[0, :], expected, atol=1e-5)
- def test_sgesdd_lwork_bug_workaround():
- # Test that SGESDD lwork is sufficiently large for LAPACK.
- #
- # This checks that _compute_lwork() correctly works around a bug in
- # LAPACK versions older than 3.10.1.
- sgesdd_lwork = get_lapack_funcs('gesdd_lwork', dtype=np.float32,
- ilp64='preferred')
- n = 9537
- lwork = _compute_lwork(sgesdd_lwork, n, n,
- compute_uv=True, full_matrices=True)
- # If we called the Fortran function SGESDD directly with IWORK=-1, the
- # LAPACK bug would result in lwork being 272929856, which was too small.
- # (The result was returned in a single precision float, which does not
- # have sufficient precision to represent the exact integer value that it
- # computed internally.) The work-around implemented in _compute_lwork()
- # will convert that to 272929888. If we are using LAPACK 3.10.1 or later
- # (such as in OpenBLAS 0.3.21 or later), the work-around will return
- # 272929920, because it does not know which version of LAPACK is being
- # used, so it always applies the correction to whatever it is given. We
- # will accept either 272929888 or 272929920.
- # Note that the acceptable values are a LAPACK implementation detail.
- # If a future version of LAPACK changes how SGESDD works, and therefore
- # changes the required LWORK size, the acceptable values might have to
- # be updated.
- assert lwork == 272929888 or lwork == 272929920
- class TestSytrd:
- @pytest.mark.parametrize('dtype', REAL_DTYPES)
- def test_sytrd_with_zero_dim_array(self, dtype):
- # Assert that a 0x0 matrix raises an error
- A = np.zeros((0, 0), dtype=dtype)
- sytrd = get_lapack_funcs('sytrd', (A,))
- assert_raises(ValueError, sytrd, A)
- @pytest.mark.parametrize('dtype', REAL_DTYPES)
- @pytest.mark.parametrize('n', (1, 3))
- def test_sytrd(self, dtype, n):
- A = np.zeros((n, n), dtype=dtype)
- sytrd, sytrd_lwork = \
- get_lapack_funcs(('sytrd', 'sytrd_lwork'), (A,))
- # some upper triangular array
- A[np.triu_indices_from(A)] = \
- np.arange(1, n*(n+1)//2+1, dtype=dtype)
- # query lwork
- lwork, info = sytrd_lwork(n)
- assert_equal(info, 0)
- # check lower=1 behavior (shouldn't do much since the matrix is
- # upper triangular)
- data, d, e, tau, info = sytrd(A, lower=1, lwork=lwork)
- assert_equal(info, 0)
- assert_allclose(data, A, atol=5*np.finfo(dtype).eps, rtol=1.0)
- assert_allclose(d, np.diag(A))
- assert_allclose(e, 0.0)
- assert_allclose(tau, 0.0)
- # and now for the proper test (lower=0 is the default)
- data, d, e, tau, info = sytrd(A, lwork=lwork)
- assert_equal(info, 0)
- # assert Q^T*A*Q = tridiag(e, d, e)
- # build tridiagonal matrix
- T = np.zeros_like(A, dtype=dtype)
- k = np.arange(A.shape[0])
- T[k, k] = d
- k2 = np.arange(A.shape[0]-1)
- T[k2+1, k2] = e
- T[k2, k2+1] = e
- # build Q
- Q = np.eye(n, n, dtype=dtype)
- for i in range(n-1):
- v = np.zeros(n, dtype=dtype)
- v[:i] = data[:i, i+1]
- v[i] = 1.0
- H = np.eye(n, n, dtype=dtype) - tau[i] * np.outer(v, v)
- Q = np.dot(H, Q)
- # Make matrix fully symmetric
- i_lower = np.tril_indices(n, -1)
- A[i_lower] = A.T[i_lower]
- QTAQ = np.dot(Q.T, np.dot(A, Q))
- # disable rtol here since some values in QTAQ and T are very close
- # to 0.
- assert_allclose(QTAQ, T, atol=5*np.finfo(dtype).eps, rtol=1.0)
- class TestHetrd:
- @pytest.mark.parametrize('complex_dtype', COMPLEX_DTYPES)
- def test_hetrd_with_zero_dim_array(self, complex_dtype):
- # Assert that a 0x0 matrix raises an error
- A = np.zeros((0, 0), dtype=complex_dtype)
- hetrd = get_lapack_funcs('hetrd', (A,))
- assert_raises(ValueError, hetrd, A)
- @pytest.mark.parametrize('real_dtype,complex_dtype',
- zip(REAL_DTYPES, COMPLEX_DTYPES))
- @pytest.mark.parametrize('n', (1, 3))
- def test_hetrd(self, n, real_dtype, complex_dtype):
- A = np.zeros((n, n), dtype=complex_dtype)
- hetrd, hetrd_lwork = \
- get_lapack_funcs(('hetrd', 'hetrd_lwork'), (A,))
- # some upper triangular array
- A[np.triu_indices_from(A)] = (
- np.arange(1, n*(n+1)//2+1, dtype=real_dtype)
- + 1j * np.arange(1, n*(n+1)//2+1, dtype=real_dtype)
- )
- np.fill_diagonal(A, np.real(np.diag(A)))
- # test query lwork
- for x in [0, 1]:
- _, info = hetrd_lwork(n, lower=x)
- assert_equal(info, 0)
- # lwork returns complex which segfaults hetrd call (gh-10388)
- # use the safe and recommended option
- lwork = _compute_lwork(hetrd_lwork, n)
- # check lower=1 behavior (shouldn't do much since the matrix is
- # upper triangular)
- data, d, e, tau, info = hetrd(A, lower=1, lwork=lwork)
- assert_equal(info, 0)
- assert_allclose(data, A, atol=5*np.finfo(real_dtype).eps, rtol=1.0)
- assert_allclose(d, np.real(np.diag(A)))
- assert_allclose(e, 0.0)
- assert_allclose(tau, 0.0)
- # and now for the proper test (lower=0 is the default)
- data, d, e, tau, info = hetrd(A, lwork=lwork)
- assert_equal(info, 0)
- # assert Q^T*A*Q = tridiag(e, d, e)
- # build tridiagonal matrix
- T = np.zeros_like(A, dtype=real_dtype)
- k = np.arange(A.shape[0], dtype=int)
- T[k, k] = d
- k2 = np.arange(A.shape[0]-1, dtype=int)
- T[k2+1, k2] = e
- T[k2, k2+1] = e
- # build Q
- Q = np.eye(n, n, dtype=complex_dtype)
- for i in range(n-1):
- v = np.zeros(n, dtype=complex_dtype)
- v[:i] = data[:i, i+1]
- v[i] = 1.0
- H = np.eye(n, n, dtype=complex_dtype) \
- - tau[i] * np.outer(v, np.conj(v))
- Q = np.dot(H, Q)
- # Make matrix fully Hermitian
- i_lower = np.tril_indices(n, -1)
- A[i_lower] = np.conj(A.T[i_lower])
- QHAQ = np.dot(np.conj(Q.T), np.dot(A, Q))
- # disable rtol here since some values in QTAQ and T are very close
- # to 0.
- assert_allclose(
- QHAQ, T, atol=10*np.finfo(real_dtype).eps, rtol=1.0
- )
- def test_gglse():
- # Example data taken from NAG manual
- for ind, dtype in enumerate(DTYPES):
- # DTYPES = <s,d,c,z> gglse
- func, func_lwork = get_lapack_funcs(('gglse', 'gglse_lwork'),
- dtype=dtype)
- lwork = _compute_lwork(func_lwork, m=6, n=4, p=2)
- # For <s,d>gglse
- if ind < 2:
- a = np.array([[-0.57, -1.28, -0.39, 0.25],
- [-1.93, 1.08, -0.31, -2.14],
- [2.30, 0.24, 0.40, -0.35],
- [-1.93, 0.64, -0.66, 0.08],
- [0.15, 0.30, 0.15, -2.13],
- [-0.02, 1.03, -1.43, 0.50]], dtype=dtype)
- c = np.array([-1.50, -2.14, 1.23, -0.54, -1.68, 0.82], dtype=dtype)
- d = np.array([0., 0.], dtype=dtype)
- # For <s,d>gglse
- else:
- a = np.array([[0.96-0.81j, -0.03+0.96j, -0.91+2.06j, -0.05+0.41j],
- [-0.98+1.98j, -1.20+0.19j, -0.66+0.42j, -0.81+0.56j],
- [0.62-0.46j, 1.01+0.02j, 0.63-0.17j, -1.11+0.60j],
- [0.37+0.38j, 0.19-0.54j, -0.98-0.36j, 0.22-0.20j],
- [0.83+0.51j, 0.20+0.01j, -0.17-0.46j, 1.47+1.59j],
- [1.08-0.28j, 0.20-0.12j, -0.07+1.23j, 0.26+0.26j]])
- c = np.array([[-2.54+0.09j],
- [1.65-2.26j],
- [-2.11-3.96j],
- [1.82+3.30j],
- [-6.41+3.77j],
- [2.07+0.66j]])
- d = np.zeros(2, dtype=dtype)
- b = np.array([[1., 0., -1., 0.], [0., 1., 0., -1.]], dtype=dtype)
- _, _, _, result, _ = func(a, b, c, d, lwork=lwork)
- if ind < 2:
- expected = np.array([0.48904455,
- 0.99754786,
- 0.48904455,
- 0.99754786])
- else:
- expected = np.array([1.08742917-1.96205783j,
- -0.74093902+3.72973919j,
- 1.08742917-1.96205759j,
- -0.74093896+3.72973895j])
- assert_array_almost_equal(result, expected, decimal=4)
- def test_sycon_hecon():
- seed(1234)
- for ind, dtype in enumerate(DTYPES+COMPLEX_DTYPES):
- # DTYPES + COMPLEX DTYPES = <s,d,c,z> sycon + <c,z>hecon
- n = 10
- # For <s,d,c,z>sycon
- if ind < 4:
- func_lwork = get_lapack_funcs('sytrf_lwork', dtype=dtype)
- funcon, functrf = get_lapack_funcs(('sycon', 'sytrf'), dtype=dtype)
- A = (rand(n, n)).astype(dtype)
- # For <c,z>hecon
- else:
- func_lwork = get_lapack_funcs('hetrf_lwork', dtype=dtype)
- funcon, functrf = get_lapack_funcs(('hecon', 'hetrf'), dtype=dtype)
- A = (rand(n, n) + rand(n, n)*1j).astype(dtype)
- # Since sycon only refers to upper/lower part, conj() is safe here.
- A = (A + A.conj().T)/2 + 2*np.eye(n, dtype=dtype)
- anorm = norm(A, 1)
- lwork = _compute_lwork(func_lwork, n)
- ldu, ipiv, _ = functrf(A, lwork=lwork, lower=1)
- rcond, _ = funcon(a=ldu, ipiv=ipiv, anorm=anorm, lower=1)
- # The error is at most 1-fold
- assert_(abs(1/rcond - np.linalg.cond(A, p=1))*rcond < 1)
- def test_sygst():
- seed(1234)
- for ind, dtype in enumerate(REAL_DTYPES):
- # DTYPES = <s,d> sygst
- n = 10
- potrf, sygst, syevd, sygvd = get_lapack_funcs(('potrf', 'sygst',
- 'syevd', 'sygvd'),
- dtype=dtype)
- A = rand(n, n).astype(dtype)
- A = (A + A.T)/2
- # B must be positive definite
- B = rand(n, n).astype(dtype)
- B = (B + B.T)/2 + 2 * np.eye(n, dtype=dtype)
- # Perform eig (sygvd)
- eig_gvd, _, info = sygvd(A, B)
- assert_(info == 0)
- # Convert to std problem potrf
- b, info = potrf(B)
- assert_(info == 0)
- a, info = sygst(A, b)
- assert_(info == 0)
- eig, _, info = syevd(a)
- assert_(info == 0)
- assert_allclose(eig, eig_gvd, rtol=1e-4)
- def test_hegst():
- seed(1234)
- for ind, dtype in enumerate(COMPLEX_DTYPES):
- # DTYPES = <c,z> hegst
- n = 10
- potrf, hegst, heevd, hegvd = get_lapack_funcs(('potrf', 'hegst',
- 'heevd', 'hegvd'),
- dtype=dtype)
- A = rand(n, n).astype(dtype) + 1j * rand(n, n).astype(dtype)
- A = (A + A.conj().T)/2
- # B must be positive definite
- B = rand(n, n).astype(dtype) + 1j * rand(n, n).astype(dtype)
- B = (B + B.conj().T)/2 + 2 * np.eye(n, dtype=dtype)
- # Perform eig (hegvd)
- eig_gvd, _, info = hegvd(A, B)
- assert_(info == 0)
- # Convert to std problem potrf
- b, info = potrf(B)
- assert_(info == 0)
- a, info = hegst(A, b)
- assert_(info == 0)
- eig, _, info = heevd(a)
- assert_(info == 0)
- assert_allclose(eig, eig_gvd, rtol=1e-4)
- def test_tzrzf():
- """
- This test performs an RZ decomposition in which an m x n upper trapezoidal
- array M (m <= n) is factorized as M = [R 0] * Z where R is upper triangular
- and Z is unitary.
- """
- seed(1234)
- m, n = 10, 15
- for ind, dtype in enumerate(DTYPES):
- tzrzf, tzrzf_lw = get_lapack_funcs(('tzrzf', 'tzrzf_lwork'),
- dtype=dtype)
- lwork = _compute_lwork(tzrzf_lw, m, n)
- if ind < 2:
- A = triu(rand(m, n).astype(dtype))
- else:
- A = triu((rand(m, n) + rand(m, n)*1j).astype(dtype))
- # assert wrong shape arg, f2py returns generic error
- assert_raises(Exception, tzrzf, A.T)
- rz, tau, info = tzrzf(A, lwork=lwork)
- # Check success
- assert_(info == 0)
- # Get Z manually for comparison
- R = np.hstack((rz[:, :m], np.zeros((m, n-m), dtype=dtype)))
- V = np.hstack((np.eye(m, dtype=dtype), rz[:, m:]))
- Id = np.eye(n, dtype=dtype)
- ref = [Id-tau[x]*V[[x], :].T.dot(V[[x], :].conj()) for x in range(m)]
- Z = reduce(np.dot, ref)
- assert_allclose(R.dot(Z) - A, zeros_like(A, dtype=dtype),
- atol=10*np.spacing(dtype(1.0).real), rtol=0.)
- def test_tfsm():
- """
- Test for solving a linear system with the coefficient matrix is a
- triangular array stored in Full Packed (RFP) format.
- """
- seed(1234)
- for ind, dtype in enumerate(DTYPES):
- n = 20
- if ind > 1:
- A = triu(rand(n, n) + rand(n, n)*1j + eye(n)).astype(dtype)
- trans = 'C'
- else:
- A = triu(rand(n, n) + eye(n)).astype(dtype)
- trans = 'T'
- trttf, tfttr, tfsm = get_lapack_funcs(('trttf', 'tfttr', 'tfsm'),
- dtype=dtype)
- Afp, _ = trttf(A)
- B = rand(n, 2).astype(dtype)
- soln = tfsm(-1, Afp, B)
- assert_array_almost_equal(soln, solve(-A, B),
- decimal=4 if ind % 2 == 0 else 6)
- soln = tfsm(-1, Afp, B, trans=trans)
- assert_array_almost_equal(soln, solve(-A.conj().T, B),
- decimal=4 if ind % 2 == 0 else 6)
- # Make A, unit diagonal
- A[np.arange(n), np.arange(n)] = dtype(1.)
- soln = tfsm(-1, Afp, B, trans=trans, diag='U')
- assert_array_almost_equal(soln, solve(-A.conj().T, B),
- decimal=4 if ind % 2 == 0 else 6)
- # Change side
- B2 = rand(3, n).astype(dtype)
- soln = tfsm(-1, Afp, B2, trans=trans, diag='U', side='R')
- assert_array_almost_equal(soln, solve(-A, B2.T).conj().T,
- decimal=4 if ind % 2 == 0 else 6)
- def test_ormrz_unmrz():
- """
- This test performs a matrix multiplication with an arbitrary m x n matric C
- and a unitary matrix Q without explicitly forming the array. The array data
- is encoded in the rectangular part of A which is obtained from ?TZRZF. Q
- size is inferred by m, n, side keywords.
- """
- seed(1234)
- qm, qn, cn = 10, 15, 15
- for ind, dtype in enumerate(DTYPES):
- tzrzf, tzrzf_lw = get_lapack_funcs(('tzrzf', 'tzrzf_lwork'),
- dtype=dtype)
- lwork_rz = _compute_lwork(tzrzf_lw, qm, qn)
- if ind < 2:
- A = triu(rand(qm, qn).astype(dtype))
- C = rand(cn, cn).astype(dtype)
- orun_mrz, orun_mrz_lw = get_lapack_funcs(('ormrz', 'ormrz_lwork'),
- dtype=dtype)
- else:
- A = triu((rand(qm, qn) + rand(qm, qn)*1j).astype(dtype))
- C = (rand(cn, cn) + rand(cn, cn)*1j).astype(dtype)
- orun_mrz, orun_mrz_lw = get_lapack_funcs(('unmrz', 'unmrz_lwork'),
- dtype=dtype)
- lwork_mrz = _compute_lwork(orun_mrz_lw, cn, cn)
- rz, tau, info = tzrzf(A, lwork=lwork_rz)
- # Get Q manually for comparison
- V = np.hstack((np.eye(qm, dtype=dtype), rz[:, qm:]))
- Id = np.eye(qn, dtype=dtype)
- ref = [Id-tau[x]*V[[x], :].T.dot(V[[x], :].conj()) for x in range(qm)]
- Q = reduce(np.dot, ref)
- # Now that we have Q, we can test whether lapack results agree with
- # each case of CQ, CQ^H, QC, and QC^H
- trans = 'T' if ind < 2 else 'C'
- tol = 10*np.spacing(dtype(1.0).real)
- cq, info = orun_mrz(rz, tau, C, lwork=lwork_mrz)
- assert_(info == 0)
- assert_allclose(cq - Q.dot(C), zeros_like(C), atol=tol, rtol=0.)
- cq, info = orun_mrz(rz, tau, C, trans=trans, lwork=lwork_mrz)
- assert_(info == 0)
- assert_allclose(cq - Q.conj().T.dot(C), zeros_like(C), atol=tol,
- rtol=0.)
- cq, info = orun_mrz(rz, tau, C, side='R', lwork=lwork_mrz)
- assert_(info == 0)
- assert_allclose(cq - C.dot(Q), zeros_like(C), atol=tol, rtol=0.)
- cq, info = orun_mrz(rz, tau, C, side='R', trans=trans, lwork=lwork_mrz)
- assert_(info == 0)
- assert_allclose(cq - C.dot(Q.conj().T), zeros_like(C), atol=tol,
- rtol=0.)
- def test_tfttr_trttf():
- """
- Test conversion routines between the Rectengular Full Packed (RFP) format
- and Standard Triangular Array (TR)
- """
- seed(1234)
- for ind, dtype in enumerate(DTYPES):
- n = 20
- if ind > 1:
- A_full = (rand(n, n) + rand(n, n)*1j).astype(dtype)
- transr = 'C'
- else:
- A_full = (rand(n, n)).astype(dtype)
- transr = 'T'
- trttf, tfttr = get_lapack_funcs(('trttf', 'tfttr'), dtype=dtype)
- A_tf_U, info = trttf(A_full)
- assert_(info == 0)
- A_tf_L, info = trttf(A_full, uplo='L')
- assert_(info == 0)
- A_tf_U_T, info = trttf(A_full, transr=transr, uplo='U')
- assert_(info == 0)
- A_tf_L_T, info = trttf(A_full, transr=transr, uplo='L')
- assert_(info == 0)
- # Create the RFP array manually (n is even!)
- A_tf_U_m = zeros((n+1, n//2), dtype=dtype)
- A_tf_U_m[:-1, :] = triu(A_full)[:, n//2:]
- A_tf_U_m[n//2+1:, :] += triu(A_full)[:n//2, :n//2].conj().T
- A_tf_L_m = zeros((n+1, n//2), dtype=dtype)
- A_tf_L_m[1:, :] = tril(A_full)[:, :n//2]
- A_tf_L_m[:n//2, :] += tril(A_full)[n//2:, n//2:].conj().T
- assert_array_almost_equal(A_tf_U, A_tf_U_m.reshape(-1, order='F'))
- assert_array_almost_equal(A_tf_U_T,
- A_tf_U_m.conj().T.reshape(-1, order='F'))
- assert_array_almost_equal(A_tf_L, A_tf_L_m.reshape(-1, order='F'))
- assert_array_almost_equal(A_tf_L_T,
- A_tf_L_m.conj().T.reshape(-1, order='F'))
- # Get the original array from RFP
- A_tr_U, info = tfttr(n, A_tf_U)
- assert_(info == 0)
- A_tr_L, info = tfttr(n, A_tf_L, uplo='L')
- assert_(info == 0)
- A_tr_U_T, info = tfttr(n, A_tf_U_T, transr=transr, uplo='U')
- assert_(info == 0)
- A_tr_L_T, info = tfttr(n, A_tf_L_T, transr=transr, uplo='L')
- assert_(info == 0)
- assert_array_almost_equal(A_tr_U, triu(A_full))
- assert_array_almost_equal(A_tr_U_T, triu(A_full))
- assert_array_almost_equal(A_tr_L, tril(A_full))
- assert_array_almost_equal(A_tr_L_T, tril(A_full))
- def test_tpttr_trttp():
- """
- Test conversion routines between the Rectengular Full Packed (RFP) format
- and Standard Triangular Array (TR)
- """
- seed(1234)
- for ind, dtype in enumerate(DTYPES):
- n = 20
- if ind > 1:
- A_full = (rand(n, n) + rand(n, n)*1j).astype(dtype)
- else:
- A_full = (rand(n, n)).astype(dtype)
- trttp, tpttr = get_lapack_funcs(('trttp', 'tpttr'), dtype=dtype)
- A_tp_U, info = trttp(A_full)
- assert_(info == 0)
- A_tp_L, info = trttp(A_full, uplo='L')
- assert_(info == 0)
- # Create the TP array manually
- inds = tril_indices(n)
- A_tp_U_m = zeros(n*(n+1)//2, dtype=dtype)
- A_tp_U_m[:] = (triu(A_full).T)[inds]
- inds = triu_indices(n)
- A_tp_L_m = zeros(n*(n+1)//2, dtype=dtype)
- A_tp_L_m[:] = (tril(A_full).T)[inds]
- assert_array_almost_equal(A_tp_U, A_tp_U_m)
- assert_array_almost_equal(A_tp_L, A_tp_L_m)
- # Get the original array from TP
- A_tr_U, info = tpttr(n, A_tp_U)
- assert_(info == 0)
- A_tr_L, info = tpttr(n, A_tp_L, uplo='L')
- assert_(info == 0)
- assert_array_almost_equal(A_tr_U, triu(A_full))
- assert_array_almost_equal(A_tr_L, tril(A_full))
- def test_pftrf():
- """
- Test Cholesky factorization of a positive definite Rectengular Full
- Packed (RFP) format array
- """
- seed(1234)
- for ind, dtype in enumerate(DTYPES):
- n = 20
- if ind > 1:
- A = (rand(n, n) + rand(n, n)*1j).astype(dtype)
- A = A + A.conj().T + n*eye(n)
- else:
- A = (rand(n, n)).astype(dtype)
- A = A + A.T + n*eye(n)
- pftrf, trttf, tfttr = get_lapack_funcs(('pftrf', 'trttf', 'tfttr'),
- dtype=dtype)
- # Get the original array from TP
- Afp, info = trttf(A)
- Achol_rfp, info = pftrf(n, Afp)
- assert_(info == 0)
- A_chol_r, _ = tfttr(n, Achol_rfp)
- Achol = cholesky(A)
- assert_array_almost_equal(A_chol_r, Achol)
- def test_pftri():
- """
- Test Cholesky factorization of a positive definite Rectengular Full
- Packed (RFP) format array to find its inverse
- """
- seed(1234)
- for ind, dtype in enumerate(DTYPES):
- n = 20
- if ind > 1:
- A = (rand(n, n) + rand(n, n)*1j).astype(dtype)
- A = A + A.conj().T + n*eye(n)
- else:
- A = (rand(n, n)).astype(dtype)
- A = A + A.T + n*eye(n)
- pftri, pftrf, trttf, tfttr = get_lapack_funcs(('pftri',
- 'pftrf',
- 'trttf',
- 'tfttr'),
- dtype=dtype)
- # Get the original array from TP
- Afp, info = trttf(A)
- A_chol_rfp, info = pftrf(n, Afp)
- A_inv_rfp, info = pftri(n, A_chol_rfp)
- assert_(info == 0)
- A_inv_r, _ = tfttr(n, A_inv_rfp)
- Ainv = inv(A)
- assert_array_almost_equal(A_inv_r, triu(Ainv),
- decimal=4 if ind % 2 == 0 else 6)
- def test_pftrs():
- """
- Test Cholesky factorization of a positive definite Rectengular Full
- Packed (RFP) format array and solve a linear system
- """
- seed(1234)
- for ind, dtype in enumerate(DTYPES):
- n = 20
- if ind > 1:
- A = (rand(n, n) + rand(n, n)*1j).astype(dtype)
- A = A + A.conj().T + n*eye(n)
- else:
- A = (rand(n, n)).astype(dtype)
- A = A + A.T + n*eye(n)
- B = ones((n, 3), dtype=dtype)
- Bf1 = ones((n+2, 3), dtype=dtype)
- Bf2 = ones((n-2, 3), dtype=dtype)
- pftrs, pftrf, trttf, tfttr = get_lapack_funcs(('pftrs',
- 'pftrf',
- 'trttf',
- 'tfttr'),
- dtype=dtype)
- # Get the original array from TP
- Afp, info = trttf(A)
- A_chol_rfp, info = pftrf(n, Afp)
- # larger B arrays shouldn't segfault
- soln, info = pftrs(n, A_chol_rfp, Bf1)
- assert_(info == 0)
- assert_raises(Exception, pftrs, n, A_chol_rfp, Bf2)
- soln, info = pftrs(n, A_chol_rfp, B)
- assert_(info == 0)
- assert_array_almost_equal(solve(A, B), soln,
- decimal=4 if ind % 2 == 0 else 6)
- def test_sfrk_hfrk():
- """
- Test for performing a symmetric rank-k operation for matrix in RFP format.
- """
- seed(1234)
- for ind, dtype in enumerate(DTYPES):
- n = 20
- if ind > 1:
- A = (rand(n, n) + rand(n, n)*1j).astype(dtype)
- A = A + A.conj().T + n*eye(n)
- else:
- A = (rand(n, n)).astype(dtype)
- A = A + A.T + n*eye(n)
- prefix = 's'if ind < 2 else 'h'
- trttf, tfttr, shfrk = get_lapack_funcs(('trttf', 'tfttr', '{}frk'
- ''.format(prefix)),
- dtype=dtype)
- Afp, _ = trttf(A)
- C = np.random.rand(n, 2).astype(dtype)
- Afp_out = shfrk(n, 2, -1, C, 2, Afp)
- A_out, _ = tfttr(n, Afp_out)
- assert_array_almost_equal(A_out, triu(-C.dot(C.conj().T) + 2*A),
- decimal=4 if ind % 2 == 0 else 6)
- def test_syconv():
- """
- Test for going back and forth between the returned format of he/sytrf to
- L and D factors/permutations.
- """
- seed(1234)
- for ind, dtype in enumerate(DTYPES):
- n = 10
- if ind > 1:
- A = (randint(-30, 30, (n, n)) +
- randint(-30, 30, (n, n))*1j).astype(dtype)
- A = A + A.conj().T
- else:
- A = randint(-30, 30, (n, n)).astype(dtype)
- A = A + A.T + n*eye(n)
- tol = 100*np.spacing(dtype(1.0).real)
- syconv, trf, trf_lwork = get_lapack_funcs(('syconv', 'sytrf',
- 'sytrf_lwork'), dtype=dtype)
- lw = _compute_lwork(trf_lwork, n, lower=1)
- L, D, perm = ldl(A, lower=1, hermitian=False)
- lw = _compute_lwork(trf_lwork, n, lower=1)
- ldu, ipiv, info = trf(A, lower=1, lwork=lw)
- a, e, info = syconv(ldu, ipiv, lower=1)
- assert_allclose(tril(a, -1,), tril(L[perm, :], -1), atol=tol, rtol=0.)
- # Test also upper
- U, D, perm = ldl(A, lower=0, hermitian=False)
- ldu, ipiv, info = trf(A, lower=0)
- a, e, info = syconv(ldu, ipiv, lower=0)
- assert_allclose(triu(a, 1), triu(U[perm, :], 1), atol=tol, rtol=0.)
- class TestBlockedQR:
- """
- Tests for the blocked QR factorization, namely through geqrt, gemqrt, tpqrt
- and tpmqr.
- """
- def test_geqrt_gemqrt(self):
- seed(1234)
- for ind, dtype in enumerate(DTYPES):
- n = 20
- if ind > 1:
- A = (rand(n, n) + rand(n, n)*1j).astype(dtype)
- else:
- A = (rand(n, n)).astype(dtype)
- tol = 100*np.spacing(dtype(1.0).real)
- geqrt, gemqrt = get_lapack_funcs(('geqrt', 'gemqrt'), dtype=dtype)
- a, t, info = geqrt(n, A)
- assert info == 0
- # Extract elementary reflectors from lower triangle, adding the
- # main diagonal of ones.
- v = np.tril(a, -1) + np.eye(n, dtype=dtype)
- # Generate the block Householder transform I - VTV^H
- Q = np.eye(n, dtype=dtype) - v @ t @ v.T.conj()
- R = np.triu(a)
- # Test columns of Q are orthogonal
- assert_allclose(Q.T.conj() @ Q, np.eye(n, dtype=dtype), atol=tol,
- rtol=0.)
- assert_allclose(Q @ R, A, atol=tol, rtol=0.)
- if ind > 1:
- C = (rand(n, n) + rand(n, n)*1j).astype(dtype)
- transpose = 'C'
- else:
- C = (rand(n, n)).astype(dtype)
- transpose = 'T'
- for side in ('L', 'R'):
- for trans in ('N', transpose):
- c, info = gemqrt(a, t, C, side=side, trans=trans)
- assert info == 0
- if trans == transpose:
- q = Q.T.conj()
- else:
- q = Q
- if side == 'L':
- qC = q @ C
- else:
- qC = C @ q
- assert_allclose(c, qC, atol=tol, rtol=0.)
- # Test default arguments
- if (side, trans) == ('L', 'N'):
- c_default, info = gemqrt(a, t, C)
- assert info == 0
- assert_equal(c_default, c)
- # Test invalid side/trans
- assert_raises(Exception, gemqrt, a, t, C, side='A')
- assert_raises(Exception, gemqrt, a, t, C, trans='A')
- def test_tpqrt_tpmqrt(self):
- seed(1234)
- for ind, dtype in enumerate(DTYPES):
- n = 20
- if ind > 1:
- A = (rand(n, n) + rand(n, n)*1j).astype(dtype)
- B = (rand(n, n) + rand(n, n)*1j).astype(dtype)
- else:
- A = (rand(n, n)).astype(dtype)
- B = (rand(n, n)).astype(dtype)
- tol = 100*np.spacing(dtype(1.0).real)
- tpqrt, tpmqrt = get_lapack_funcs(('tpqrt', 'tpmqrt'), dtype=dtype)
- # Test for the range of pentagonal B, from square to upper
- # triangular
- for l in (0, n // 2, n):
- a, b, t, info = tpqrt(l, n, A, B)
- assert info == 0
- # Check that lower triangular part of A has not been modified
- assert_equal(np.tril(a, -1), np.tril(A, -1))
- # Check that elements not part of the pentagonal portion of B
- # have not been modified.
- assert_equal(np.tril(b, l - n - 1), np.tril(B, l - n - 1))
- # Extract pentagonal portion of B
- B_pent, b_pent = np.triu(B, l - n), np.triu(b, l - n)
- # Generate elementary reflectors
- v = np.concatenate((np.eye(n, dtype=dtype), b_pent))
- # Generate the block Householder transform I - VTV^H
- Q = np.eye(2 * n, dtype=dtype) - v @ t @ v.T.conj()
- R = np.concatenate((np.triu(a), np.zeros_like(a)))
- # Test columns of Q are orthogonal
- assert_allclose(Q.T.conj() @ Q, np.eye(2 * n, dtype=dtype),
- atol=tol, rtol=0.)
- assert_allclose(Q @ R, np.concatenate((np.triu(A), B_pent)),
- atol=tol, rtol=0.)
- if ind > 1:
- C = (rand(n, n) + rand(n, n)*1j).astype(dtype)
- D = (rand(n, n) + rand(n, n)*1j).astype(dtype)
- transpose = 'C'
- else:
- C = (rand(n, n)).astype(dtype)
- D = (rand(n, n)).astype(dtype)
- transpose = 'T'
- for side in ('L', 'R'):
- for trans in ('N', transpose):
- c, d, info = tpmqrt(l, b, t, C, D, side=side,
- trans=trans)
- assert info == 0
- if trans == transpose:
- q = Q.T.conj()
- else:
- q = Q
- if side == 'L':
- cd = np.concatenate((c, d), axis=0)
- CD = np.concatenate((C, D), axis=0)
- qCD = q @ CD
- else:
- cd = np.concatenate((c, d), axis=1)
- CD = np.concatenate((C, D), axis=1)
- qCD = CD @ q
- assert_allclose(cd, qCD, atol=tol, rtol=0.)
- if (side, trans) == ('L', 'N'):
- c_default, d_default, info = tpmqrt(l, b, t, C, D)
- assert info == 0
- assert_equal(c_default, c)
- assert_equal(d_default, d)
- # Test invalid side/trans
- assert_raises(Exception, tpmqrt, l, b, t, C, D, side='A')
- assert_raises(Exception, tpmqrt, l, b, t, C, D, trans='A')
- def test_pstrf():
- seed(1234)
- for ind, dtype in enumerate(DTYPES):
- # DTYPES = <s, d, c, z> pstrf
- n = 10
- r = 2
- pstrf = get_lapack_funcs('pstrf', dtype=dtype)
- # Create positive semidefinite A
- if ind > 1:
- A = rand(n, n-r).astype(dtype) + 1j * rand(n, n-r).astype(dtype)
- A = A @ A.conj().T
- else:
- A = rand(n, n-r).astype(dtype)
- A = A @ A.T
- c, piv, r_c, info = pstrf(A)
- U = triu(c)
- U[r_c - n:, r_c - n:] = 0.
- assert_equal(info, 1)
- # python-dbg 3.5.2 runs cause trouble with the following assertion.
- # assert_equal(r_c, n - r)
- single_atol = 1000 * np.finfo(np.float32).eps
- double_atol = 1000 * np.finfo(np.float64).eps
- atol = single_atol if ind in [0, 2] else double_atol
- assert_allclose(A[piv-1][:, piv-1], U.conj().T @ U, rtol=0., atol=atol)
- c, piv, r_c, info = pstrf(A, lower=1)
- L = tril(c)
- L[r_c - n:, r_c - n:] = 0.
- assert_equal(info, 1)
- # assert_equal(r_c, n - r)
- single_atol = 1000 * np.finfo(np.float32).eps
- double_atol = 1000 * np.finfo(np.float64).eps
- atol = single_atol if ind in [0, 2] else double_atol
- assert_allclose(A[piv-1][:, piv-1], L @ L.conj().T, rtol=0., atol=atol)
- def test_pstf2():
- seed(1234)
- for ind, dtype in enumerate(DTYPES):
- # DTYPES = <s, d, c, z> pstf2
- n = 10
- r = 2
- pstf2 = get_lapack_funcs('pstf2', dtype=dtype)
- # Create positive semidefinite A
- if ind > 1:
- A = rand(n, n-r).astype(dtype) + 1j * rand(n, n-r).astype(dtype)
- A = A @ A.conj().T
- else:
- A = rand(n, n-r).astype(dtype)
- A = A @ A.T
- c, piv, r_c, info = pstf2(A)
- U = triu(c)
- U[r_c - n:, r_c - n:] = 0.
- assert_equal(info, 1)
- # python-dbg 3.5.2 runs cause trouble with the commented assertions.
- # assert_equal(r_c, n - r)
- single_atol = 1000 * np.finfo(np.float32).eps
- double_atol = 1000 * np.finfo(np.float64).eps
- atol = single_atol if ind in [0, 2] else double_atol
- assert_allclose(A[piv-1][:, piv-1], U.conj().T @ U, rtol=0., atol=atol)
- c, piv, r_c, info = pstf2(A, lower=1)
- L = tril(c)
- L[r_c - n:, r_c - n:] = 0.
- assert_equal(info, 1)
- # assert_equal(r_c, n - r)
- single_atol = 1000 * np.finfo(np.float32).eps
- double_atol = 1000 * np.finfo(np.float64).eps
- atol = single_atol if ind in [0, 2] else double_atol
- assert_allclose(A[piv-1][:, piv-1], L @ L.conj().T, rtol=0., atol=atol)
- def test_geequ():
- desired_real = np.array([[0.6250, 1.0000, 0.0393, -0.4269],
- [1.0000, -0.5619, -1.0000, -1.0000],
- [0.5874, -1.0000, -0.0596, -0.5341],
- [-1.0000, -0.5946, -0.0294, 0.9957]])
- desired_cplx = np.array([[-0.2816+0.5359*1j,
- 0.0812+0.9188*1j,
- -0.7439-0.2561*1j],
- [-0.3562-0.2954*1j,
- 0.9566-0.0434*1j,
- -0.0174+0.1555*1j],
- [0.8607+0.1393*1j,
- -0.2759+0.7241*1j,
- -0.1642-0.1365*1j]])
- for ind, dtype in enumerate(DTYPES):
- if ind < 2:
- # Use examples from the NAG documentation
- A = np.array([[1.80e+10, 2.88e+10, 2.05e+00, -8.90e+09],
- [5.25e+00, -2.95e+00, -9.50e-09, -3.80e+00],
- [1.58e+00, -2.69e+00, -2.90e-10, -1.04e+00],
- [-1.11e+00, -6.60e-01, -5.90e-11, 8.00e-01]])
- A = A.astype(dtype)
- else:
- A = np.array([[-1.34e+00, 0.28e+10, -6.39e+00],
- [-1.70e+00, 3.31e+10, -0.15e+00],
- [2.41e-10, -0.56e+00, -0.83e-10]], dtype=dtype)
- A += np.array([[2.55e+00, 3.17e+10, -2.20e+00],
- [-1.41e+00, -0.15e+10, 1.34e+00],
- [0.39e-10, 1.47e+00, -0.69e-10]])*1j
- A = A.astype(dtype)
- geequ = get_lapack_funcs('geequ', dtype=dtype)
- r, c, rowcnd, colcnd, amax, info = geequ(A)
- if ind < 2:
- assert_allclose(desired_real.astype(dtype), r[:, None]*A*c,
- rtol=0, atol=1e-4)
- else:
- assert_allclose(desired_cplx.astype(dtype), r[:, None]*A*c,
- rtol=0, atol=1e-4)
- def test_syequb():
- desired_log2s = np.array([0, 0, 0, 0, 0, 0, -1, -1, -2, -3])
- for ind, dtype in enumerate(DTYPES):
- A = np.eye(10, dtype=dtype)
- alpha = dtype(1. if ind < 2 else 1.j)
- d = np.array([alpha * 2.**x for x in range(-5, 5)], dtype=dtype)
- A += np.rot90(np.diag(d))
- syequb = get_lapack_funcs('syequb', dtype=dtype)
- s, scond, amax, info = syequb(A)
- assert_equal(np.log2(s).astype(int), desired_log2s)
- @pytest.mark.skipif(True,
- reason="Failing on some OpenBLAS version, see gh-12276")
- def test_heequb():
- # zheequb has a bug for versions =< LAPACK 3.9.0
- # See Reference-LAPACK gh-61 and gh-408
- # Hence the zheequb test is customized accordingly to avoid
- # work scaling.
- A = np.diag([2]*5 + [1002]*5) + np.diag(np.ones(9), k=1)*1j
- s, scond, amax, info = lapack.zheequb(A)
- assert_equal(info, 0)
- assert_allclose(np.log2(s), [0., -1.]*2 + [0.] + [-4]*5)
- A = np.diag(2**np.abs(np.arange(-5, 6)) + 0j)
- A[5, 5] = 1024
- A[5, 0] = 16j
- s, scond, amax, info = lapack.cheequb(A.astype(np.complex64), lower=1)
- assert_equal(info, 0)
- assert_allclose(np.log2(s), [-2, -1, -1, 0, 0, -5, 0, -1, -1, -2, -2])
- def test_getc2_gesc2():
- np.random.seed(42)
- n = 10
- desired_real = np.random.rand(n)
- desired_cplx = np.random.rand(n) + np.random.rand(n)*1j
- for ind, dtype in enumerate(DTYPES):
- if ind < 2:
- A = np.random.rand(n, n)
- A = A.astype(dtype)
- b = A @ desired_real
- b = b.astype(dtype)
- else:
- A = np.random.rand(n, n) + np.random.rand(n, n)*1j
- A = A.astype(dtype)
- b = A @ desired_cplx
- b = b.astype(dtype)
- getc2 = get_lapack_funcs('getc2', dtype=dtype)
- gesc2 = get_lapack_funcs('gesc2', dtype=dtype)
- lu, ipiv, jpiv, info = getc2(A, overwrite_a=0)
- x, scale = gesc2(lu, b, ipiv, jpiv, overwrite_rhs=0)
- if ind < 2:
- assert_array_almost_equal(desired_real.astype(dtype),
- x/scale, decimal=4)
- else:
- assert_array_almost_equal(desired_cplx.astype(dtype),
- x/scale, decimal=4)
- @pytest.mark.parametrize('size', [(6, 5), (5, 5)])
- @pytest.mark.parametrize('dtype', REAL_DTYPES)
- @pytest.mark.parametrize('joba', range(6)) # 'C', 'E', 'F', 'G', 'A', 'R'
- @pytest.mark.parametrize('jobu', range(4)) # 'U', 'F', 'W', 'N'
- @pytest.mark.parametrize('jobv', range(4)) # 'V', 'J', 'W', 'N'
- @pytest.mark.parametrize('jobr', [0, 1])
- @pytest.mark.parametrize('jobp', [0, 1])
- def test_gejsv_general(size, dtype, joba, jobu, jobv, jobr, jobp, jobt=0):
- """Test the lapack routine ?gejsv.
- This function tests that a singular value decomposition can be performed
- on the random M-by-N matrix A. The test performs the SVD using ?gejsv
- then performs the following checks:
- * ?gejsv exist successfully (info == 0)
- * The returned singular values are correct
- * `A` can be reconstructed from `u`, `SIGMA`, `v`
- * Ensure that u.T @ u is the identity matrix
- * Ensure that v.T @ v is the identity matrix
- * The reported matrix rank
- * The reported number of singular values
- * If denormalized floats are required
- Notes
- -----
- joba specifies several choices effecting the calculation's accuracy
- Although all arguments are tested, the tests only check that the correct
- solution is returned - NOT that the prescribed actions are performed
- internally.
- jobt is, as of v3.9.0, still experimental and removed to cut down number of
- test cases. However keyword itself is tested externally.
- """
- seed(42)
- # Define some constants for later use:
- m, n = size
- atol = 100 * np.finfo(dtype).eps
- A = generate_random_dtype_array(size, dtype)
- gejsv = get_lapack_funcs('gejsv', dtype=dtype)
- # Set up checks for invalid job? combinations
- # if an invalid combination occurs we set the appropriate
- # exit status.
- lsvec = jobu < 2 # Calculate left singular vectors
- rsvec = jobv < 2 # Calculate right singular vectors
- l2tran = (jobt == 1) and (m == n)
- is_complex = np.iscomplexobj(A)
- invalid_real_jobv = (jobv == 1) and (not lsvec) and (not is_complex)
- invalid_cplx_jobu = (jobu == 2) and not (rsvec and l2tran) and is_complex
- invalid_cplx_jobv = (jobv == 2) and not (lsvec and l2tran) and is_complex
- # Set the exit status to the expected value.
- # Here we only check for invalid combinations, not individual
- # parameters.
- if invalid_cplx_jobu:
- exit_status = -2
- elif invalid_real_jobv or invalid_cplx_jobv:
- exit_status = -3
- else:
- exit_status = 0
- if (jobu > 1) and (jobv == 1):
- assert_raises(Exception, gejsv, A, joba, jobu, jobv, jobr, jobt, jobp)
- else:
- sva, u, v, work, iwork, info = gejsv(A,
- joba=joba,
- jobu=jobu,
- jobv=jobv,
- jobr=jobr,
- jobt=jobt,
- jobp=jobp)
- # Check that ?gejsv exited successfully/as expected
- assert_equal(info, exit_status)
- # If exit_status is non-zero the combination of jobs is invalid.
- # We test this above but no calculations are performed.
- if not exit_status:
- # Check the returned singular values
- sigma = (work[0] / work[1]) * sva[:n]
- assert_allclose(sigma, svd(A, compute_uv=False), atol=atol)
- if jobu == 1:
- # If JOBU = 'F', then u contains the M-by-M matrix of
- # the left singular vectors, including an ONB of the orthogonal
- # complement of the Range(A)
- # However, to recalculate A we are concerned about the
- # first n singular values and so can ignore the latter.
- # TODO: Add a test for ONB?
- u = u[:, :n]
- if lsvec and rsvec:
- assert_allclose(u @ np.diag(sigma) @ v.conj().T, A, atol=atol)
- if lsvec:
- assert_allclose(u.conj().T @ u, np.identity(n), atol=atol)
- if rsvec:
- assert_allclose(v.conj().T @ v, np.identity(n), atol=atol)
- assert_equal(iwork[0], np.linalg.matrix_rank(A))
- assert_equal(iwork[1], np.count_nonzero(sigma))
- # iwork[2] is non-zero if requested accuracy is not warranted for
- # the data. This should never occur for these tests.
- assert_equal(iwork[2], 0)
- @pytest.mark.parametrize('dtype', REAL_DTYPES)
- def test_gejsv_edge_arguments(dtype):
- """Test edge arguments return expected status"""
- gejsv = get_lapack_funcs('gejsv', dtype=dtype)
- # scalar A
- sva, u, v, work, iwork, info = gejsv(1.)
- assert_equal(info, 0)
- assert_equal(u.shape, (1, 1))
- assert_equal(v.shape, (1, 1))
- assert_equal(sva, np.array([1.], dtype=dtype))
- # 1d A
- A = np.ones((1,), dtype=dtype)
- sva, u, v, work, iwork, info = gejsv(A)
- assert_equal(info, 0)
- assert_equal(u.shape, (1, 1))
- assert_equal(v.shape, (1, 1))
- assert_equal(sva, np.array([1.], dtype=dtype))
- # 2d empty A
- A = np.ones((1, 0), dtype=dtype)
- sva, u, v, work, iwork, info = gejsv(A)
- assert_equal(info, 0)
- assert_equal(u.shape, (1, 0))
- assert_equal(v.shape, (1, 0))
- assert_equal(sva, np.array([], dtype=dtype))
- # make sure "overwrite_a" is respected - user reported in gh-13191
- A = np.sin(np.arange(100).reshape(10, 10)).astype(dtype)
- A = np.asfortranarray(A + A.T) # make it symmetric and column major
- Ac = A.copy('A')
- _ = gejsv(A)
- assert_allclose(A, Ac)
- @pytest.mark.parametrize(('kwargs'),
- ({'joba': 9},
- {'jobu': 9},
- {'jobv': 9},
- {'jobr': 9},
- {'jobt': 9},
- {'jobp': 9})
- )
- def test_gejsv_invalid_job_arguments(kwargs):
- """Test invalid job arguments raise an Exception"""
- A = np.ones((2, 2), dtype=float)
- gejsv = get_lapack_funcs('gejsv', dtype=float)
- assert_raises(Exception, gejsv, A, **kwargs)
- @pytest.mark.parametrize("A,sva_expect,u_expect,v_expect",
- [(np.array([[2.27, -1.54, 1.15, -1.94],
- [0.28, -1.67, 0.94, -0.78],
- [-0.48, -3.09, 0.99, -0.21],
- [1.07, 1.22, 0.79, 0.63],
- [-2.35, 2.93, -1.45, 2.30],
- [0.62, -7.39, 1.03, -2.57]]),
- np.array([9.9966, 3.6831, 1.3569, 0.5000]),
- np.array([[0.2774, -0.6003, -0.1277, 0.1323],
- [0.2020, -0.0301, 0.2805, 0.7034],
- [0.2918, 0.3348, 0.6453, 0.1906],
- [-0.0938, -0.3699, 0.6781, -0.5399],
- [-0.4213, 0.5266, 0.0413, -0.0575],
- [0.7816, 0.3353, -0.1645, -0.3957]]),
- np.array([[0.1921, -0.8030, 0.0041, -0.5642],
- [-0.8794, -0.3926, -0.0752, 0.2587],
- [0.2140, -0.2980, 0.7827, 0.5027],
- [-0.3795, 0.3351, 0.6178, -0.6017]]))])
- def test_gejsv_NAG(A, sva_expect, u_expect, v_expect):
- """
- This test implements the example found in the NAG manual, f08khf.
- An example was not found for the complex case.
- """
- # NAG manual provides accuracy up to 4 decimals
- atol = 1e-4
- gejsv = get_lapack_funcs('gejsv', dtype=A.dtype)
- sva, u, v, work, iwork, info = gejsv(A)
- assert_allclose(sva_expect, sva, atol=atol)
- assert_allclose(u_expect, u, atol=atol)
- assert_allclose(v_expect, v, atol=atol)
- @pytest.mark.parametrize("dtype", DTYPES)
- def test_gttrf_gttrs(dtype):
- # The test uses ?gttrf and ?gttrs to solve a random system for each dtype,
- # tests that the output of ?gttrf define LU matricies, that input
- # parameters are unmodified, transposal options function correctly, that
- # incompatible matrix shapes raise an error, and singular matrices return
- # non zero info.
- seed(42)
- n = 10
- atol = 100 * np.finfo(dtype).eps
- # create the matrix in accordance with the data type
- du = generate_random_dtype_array((n-1,), dtype=dtype)
- d = generate_random_dtype_array((n,), dtype=dtype)
- dl = generate_random_dtype_array((n-1,), dtype=dtype)
- diag_cpy = [dl.copy(), d.copy(), du.copy()]
- A = np.diag(d) + np.diag(dl, -1) + np.diag(du, 1)
- x = np.random.rand(n)
- b = A @ x
- gttrf, gttrs = get_lapack_funcs(('gttrf', 'gttrs'), dtype=dtype)
- _dl, _d, _du, du2, ipiv, info = gttrf(dl, d, du)
- # test to assure that the inputs of ?gttrf are unmodified
- assert_array_equal(dl, diag_cpy[0])
- assert_array_equal(d, diag_cpy[1])
- assert_array_equal(du, diag_cpy[2])
- # generate L and U factors from ?gttrf return values
- # L/U are lower/upper triangular by construction (initially and at end)
- U = np.diag(_d, 0) + np.diag(_du, 1) + np.diag(du2, 2)
- L = np.eye(n, dtype=dtype)
- for i, m in enumerate(_dl):
- # L is given in a factored form.
- # See
- # www.hpcavf.uclan.ac.uk/softwaredoc/sgi_scsl_html/sgi_html/ch03.html
- piv = ipiv[i] - 1
- # right multiply by permutation matrix
- L[:, [i, piv]] = L[:, [piv, i]]
- # right multiply by Li, rank-one modification of identity
- L[:, i] += L[:, i+1]*m
- # one last permutation
- i, piv = -1, ipiv[-1] - 1
- # right multiply by final permutation matrix
- L[:, [i, piv]] = L[:, [piv, i]]
- # check that the outputs of ?gttrf define an LU decomposition of A
- assert_allclose(A, L @ U, atol=atol)
- b_cpy = b.copy()
- x_gttrs, info = gttrs(_dl, _d, _du, du2, ipiv, b)
- # test that the inputs of ?gttrs are unmodified
- assert_array_equal(b, b_cpy)
- # test that the result of ?gttrs matches the expected input
- assert_allclose(x, x_gttrs, atol=atol)
- # test that ?gttrf and ?gttrs work with transposal options
- if dtype in REAL_DTYPES:
- trans = "T"
- b_trans = A.T @ x
- else:
- trans = "C"
- b_trans = A.conj().T @ x
- x_gttrs, info = gttrs(_dl, _d, _du, du2, ipiv, b_trans, trans=trans)
- assert_allclose(x, x_gttrs, atol=atol)
- # test that ValueError is raised with incompatible matrix shapes
- with assert_raises(ValueError):
- gttrf(dl[:-1], d, du)
- with assert_raises(ValueError):
- gttrf(dl, d[:-1], du)
- with assert_raises(ValueError):
- gttrf(dl, d, du[:-1])
- # test that matrix of size n=2 raises exception
- with assert_raises(Exception):
- gttrf(dl[0], d[:1], du[0])
- # test that singular (row of all zeroes) matrix fails via info
- du[0] = 0
- d[0] = 0
- __dl, __d, __du, _du2, _ipiv, _info = gttrf(dl, d, du)
- np.testing.assert_(__d[info - 1] == 0,
- "?gttrf: _d[info-1] is {}, not the illegal value :0."
- .format(__d[info - 1]))
- @pytest.mark.parametrize("du, d, dl, du_exp, d_exp, du2_exp, ipiv_exp, b, x",
- [(np.array([2.1, -1.0, 1.9, 8.0]),
- np.array([3.0, 2.3, -5.0, -.9, 7.1]),
- np.array([3.4, 3.6, 7.0, -6.0]),
- np.array([2.3, -5, -.9, 7.1]),
- np.array([3.4, 3.6, 7, -6, -1.015373]),
- np.array([-1, 1.9, 8]),
- np.array([2, 3, 4, 5, 5]),
- np.array([[2.7, 6.6],
- [-0.5, 10.8],
- [2.6, -3.2],
- [0.6, -11.2],
- [2.7, 19.1]
- ]),
- np.array([[-4, 5],
- [7, -4],
- [3, -3],
- [-4, -2],
- [-3, 1]])),
- (
- np.array([2 - 1j, 2 + 1j, -1 + 1j, 1 - 1j]),
- np.array([-1.3 + 1.3j, -1.3 + 1.3j,
- -1.3 + 3.3j, - .3 + 4.3j,
- -3.3 + 1.3j]),
- np.array([1 - 2j, 1 + 1j, 2 - 3j, 1 + 1j]),
- # du exp
- np.array([-1.3 + 1.3j, -1.3 + 3.3j,
- -0.3 + 4.3j, -3.3 + 1.3j]),
- np.array([1 - 2j, 1 + 1j, 2 - 3j, 1 + 1j,
- -1.3399 + 0.2875j]),
- np.array([2 + 1j, -1 + 1j, 1 - 1j]),
- np.array([2, 3, 4, 5, 5]),
- np.array([[2.4 - 5j, 2.7 + 6.9j],
- [3.4 + 18.2j, - 6.9 - 5.3j],
- [-14.7 + 9.7j, - 6 - .6j],
- [31.9 - 7.7j, -3.9 + 9.3j],
- [-1 + 1.6j, -3 + 12.2j]]),
- np.array([[1 + 1j, 2 - 1j],
- [3 - 1j, 1 + 2j],
- [4 + 5j, -1 + 1j],
- [-1 - 2j, 2 + 1j],
- [1 - 1j, 2 - 2j]])
- )])
- def test_gttrf_gttrs_NAG_f07cdf_f07cef_f07crf_f07csf(du, d, dl, du_exp, d_exp,
- du2_exp, ipiv_exp, b, x):
- # test to assure that wrapper is consistent with NAG Library Manual Mark 26
- # example problems: f07cdf and f07cef (real)
- # examples: f07crf and f07csf (complex)
- # (Links may expire, so search for "NAG Library Manual Mark 26" online)
- gttrf, gttrs = get_lapack_funcs(('gttrf', "gttrs"), (du[0], du[0]))
- _dl, _d, _du, du2, ipiv, info = gttrf(dl, d, du)
- assert_allclose(du2, du2_exp)
- assert_allclose(_du, du_exp)
- assert_allclose(_d, d_exp, atol=1e-4) # NAG examples provide 4 decimals.
- assert_allclose(ipiv, ipiv_exp)
- x_gttrs, info = gttrs(_dl, _d, _du, du2, ipiv, b)
- assert_allclose(x_gttrs, x)
- @pytest.mark.parametrize('dtype', DTYPES)
- @pytest.mark.parametrize('shape', [(3, 7), (7, 3), (2**18, 2**18)])
- def test_geqrfp_lwork(dtype, shape):
- geqrfp_lwork = get_lapack_funcs(('geqrfp_lwork'), dtype=dtype)
- m, n = shape
- lwork, info = geqrfp_lwork(m=m, n=n)
- assert_equal(info, 0)
- @pytest.mark.parametrize("ddtype,dtype",
- zip(REAL_DTYPES + REAL_DTYPES, DTYPES))
- def test_pttrf_pttrs(ddtype, dtype):
- seed(42)
- # set test tolerance appropriate for dtype
- atol = 100*np.finfo(dtype).eps
- # n is the length diagonal of A
- n = 10
- # create diagonals according to size and dtype
- # diagonal d should always be real.
- # add 4 to d so it will be dominant for all dtypes
- d = generate_random_dtype_array((n,), ddtype) + 4
- # diagonal e may be real or complex.
- e = generate_random_dtype_array((n-1,), dtype)
- # assemble diagonals together into matrix
- A = np.diag(d) + np.diag(e, -1) + np.diag(np.conj(e), 1)
- # store a copy of diagonals to later verify
- diag_cpy = [d.copy(), e.copy()]
- pttrf = get_lapack_funcs('pttrf', dtype=dtype)
- _d, _e, info = pttrf(d, e)
- # test to assure that the inputs of ?pttrf are unmodified
- assert_array_equal(d, diag_cpy[0])
- assert_array_equal(e, diag_cpy[1])
- assert_equal(info, 0, err_msg="pttrf: info = {}, should be 0".format(info))
- # test that the factors from pttrf can be recombined to make A
- L = np.diag(_e, -1) + np.diag(np.ones(n))
- D = np.diag(_d)
- assert_allclose(A, L@D@L.conjugate().T, atol=atol)
- # generate random solution x
- x = generate_random_dtype_array((n,), dtype)
- # determine accompanying b to get soln x
- b = A@x
- # determine _x from pttrs
- pttrs = get_lapack_funcs('pttrs', dtype=dtype)
- _x, info = pttrs(_d, _e.conj(), b)
- assert_equal(info, 0, err_msg="pttrs: info = {}, should be 0".format(info))
- # test that _x from pttrs matches the expected x
- assert_allclose(x, _x, atol=atol)
- @pytest.mark.parametrize("ddtype,dtype",
- zip(REAL_DTYPES + REAL_DTYPES, DTYPES))
- def test_pttrf_pttrs_errors_incompatible_shape(ddtype, dtype):
- n = 10
- pttrf = get_lapack_funcs('pttrf', dtype=dtype)
- d = generate_random_dtype_array((n,), ddtype) + 2
- e = generate_random_dtype_array((n-1,), dtype)
- # test that ValueError is raised with incompatible matrix shapes
- assert_raises(ValueError, pttrf, d[:-1], e)
- assert_raises(ValueError, pttrf, d, e[:-1])
- @pytest.mark.parametrize("ddtype,dtype",
- zip(REAL_DTYPES + REAL_DTYPES, DTYPES))
- def test_pttrf_pttrs_errors_singular_nonSPD(ddtype, dtype):
- n = 10
- pttrf = get_lapack_funcs('pttrf', dtype=dtype)
- d = generate_random_dtype_array((n,), ddtype) + 2
- e = generate_random_dtype_array((n-1,), dtype)
- # test that singular (row of all zeroes) matrix fails via info
- d[0] = 0
- e[0] = 0
- _d, _e, info = pttrf(d, e)
- assert_equal(_d[info - 1], 0,
- "?pttrf: _d[info-1] is {}, not the illegal value :0."
- .format(_d[info - 1]))
- # test with non-spd matrix
- d = generate_random_dtype_array((n,), ddtype)
- _d, _e, info = pttrf(d, e)
- assert_(info != 0, "?pttrf should fail with non-spd matrix, but didn't")
- @pytest.mark.parametrize(("d, e, d_expect, e_expect, b, x_expect"), [
- (np.array([4, 10, 29, 25, 5]),
- np.array([-2, -6, 15, 8]),
- np.array([4, 9, 25, 16, 1]),
- np.array([-.5, -.6667, .6, .5]),
- np.array([[6, 10], [9, 4], [2, 9], [14, 65],
- [7, 23]]),
- np.array([[2.5, 2], [2, -1], [1, -3], [-1, 6],
- [3, -5]])
- ), (
- np.array([16, 41, 46, 21]),
- np.array([16 + 16j, 18 - 9j, 1 - 4j]),
- np.array([16, 9, 1, 4]),
- np.array([1+1j, 2-1j, 1-4j]),
- np.array([[64+16j, -16-32j], [93+62j, 61-66j],
- [78-80j, 71-74j], [14-27j, 35+15j]]),
- np.array([[2+1j, -3-2j], [1+1j, 1+1j], [1-2j, 1-2j],
- [1-1j, 2+1j]])
- )])
- def test_pttrf_pttrs_NAG(d, e, d_expect, e_expect, b, x_expect):
- # test to assure that wrapper is consistent with NAG Manual Mark 26
- # example problems: f07jdf and f07jef (real)
- # examples: f07jrf and f07csf (complex)
- # NAG examples provide 4 decimals.
- # (Links expire, so please search for "NAG Library Manual Mark 26" online)
- atol = 1e-4
- pttrf = get_lapack_funcs('pttrf', dtype=e[0])
- _d, _e, info = pttrf(d, e)
- assert_allclose(_d, d_expect, atol=atol)
- assert_allclose(_e, e_expect, atol=atol)
- pttrs = get_lapack_funcs('pttrs', dtype=e[0])
- _x, info = pttrs(_d, _e.conj(), b)
- assert_allclose(_x, x_expect, atol=atol)
- # also test option `lower`
- if e.dtype in COMPLEX_DTYPES:
- _x, info = pttrs(_d, _e, b, lower=1)
- assert_allclose(_x, x_expect, atol=atol)
- def pteqr_get_d_e_A_z(dtype, realtype, n, compute_z):
- # used by ?pteqr tests to build parameters
- # returns tuple of (d, e, A, z)
- if compute_z == 1:
- # build Hermitian A from Q**T * tri * Q = A by creating Q and tri
- A_eig = generate_random_dtype_array((n, n), dtype)
- A_eig = A_eig + np.diag(np.zeros(n) + 4*n)
- A_eig = (A_eig + A_eig.conj().T) / 2
- # obtain right eigenvectors (orthogonal)
- vr = eigh(A_eig)[1]
- # create tridiagonal matrix
- d = generate_random_dtype_array((n,), realtype) + 4
- e = generate_random_dtype_array((n-1,), realtype)
- tri = np.diag(d) + np.diag(e, 1) + np.diag(e, -1)
- # Build A using these factors that sytrd would: (Q**T * tri * Q = A)
- A = vr @ tri @ vr.conj().T
- # vr is orthogonal
- z = vr
- else:
- # d and e are always real per lapack docs.
- d = generate_random_dtype_array((n,), realtype)
- e = generate_random_dtype_array((n-1,), realtype)
- # make SPD
- d = d + 4
- A = np.diag(d) + np.diag(e, 1) + np.diag(e, -1)
- z = np.diag(d) + np.diag(e, -1) + np.diag(e, 1)
- return (d, e, A, z)
- @pytest.mark.parametrize("dtype,realtype",
- zip(DTYPES, REAL_DTYPES + REAL_DTYPES))
- @pytest.mark.parametrize("compute_z", range(3))
- def test_pteqr(dtype, realtype, compute_z):
- '''
- Tests the ?pteqr lapack routine for all dtypes and compute_z parameters.
- It generates random SPD matrix diagonals d and e, and then confirms
- correct eigenvalues with scipy.linalg.eig. With applicable compute_z=2 it
- tests that z can reform A.
- '''
- seed(42)
- atol = 1000*np.finfo(dtype).eps
- pteqr = get_lapack_funcs(('pteqr'), dtype=dtype)
- n = 10
- d, e, A, z = pteqr_get_d_e_A_z(dtype, realtype, n, compute_z)
- d_pteqr, e_pteqr, z_pteqr, info = pteqr(d=d, e=e, z=z, compute_z=compute_z)
- assert_equal(info, 0, "info = {}, should be 0.".format(info))
- # compare the routine's eigenvalues with scipy.linalg.eig's.
- assert_allclose(np.sort(eigh(A)[0]), np.sort(d_pteqr), atol=atol)
- if compute_z:
- # verify z_pteqr as orthogonal
- assert_allclose(z_pteqr @ np.conj(z_pteqr).T, np.identity(n),
- atol=atol)
- # verify that z_pteqr recombines to A
- assert_allclose(z_pteqr @ np.diag(d_pteqr) @ np.conj(z_pteqr).T,
- A, atol=atol)
- @pytest.mark.parametrize("dtype,realtype",
- zip(DTYPES, REAL_DTYPES + REAL_DTYPES))
- @pytest.mark.parametrize("compute_z", range(3))
- def test_pteqr_error_non_spd(dtype, realtype, compute_z):
- seed(42)
- pteqr = get_lapack_funcs(('pteqr'), dtype=dtype)
- n = 10
- d, e, A, z = pteqr_get_d_e_A_z(dtype, realtype, n, compute_z)
- # test with non-spd matrix
- d_pteqr, e_pteqr, z_pteqr, info = pteqr(d - 4, e, z=z, compute_z=compute_z)
- assert info > 0
- @pytest.mark.parametrize("dtype,realtype",
- zip(DTYPES, REAL_DTYPES + REAL_DTYPES))
- @pytest.mark.parametrize("compute_z", range(3))
- def test_pteqr_raise_error_wrong_shape(dtype, realtype, compute_z):
- seed(42)
- pteqr = get_lapack_funcs(('pteqr'), dtype=dtype)
- n = 10
- d, e, A, z = pteqr_get_d_e_A_z(dtype, realtype, n, compute_z)
- # test with incorrect/incompatible array sizes
- assert_raises(ValueError, pteqr, d[:-1], e, z=z, compute_z=compute_z)
- assert_raises(ValueError, pteqr, d, e[:-1], z=z, compute_z=compute_z)
- if compute_z:
- assert_raises(ValueError, pteqr, d, e, z=z[:-1], compute_z=compute_z)
- @pytest.mark.parametrize("dtype,realtype",
- zip(DTYPES, REAL_DTYPES + REAL_DTYPES))
- @pytest.mark.parametrize("compute_z", range(3))
- def test_pteqr_error_singular(dtype, realtype, compute_z):
- seed(42)
- pteqr = get_lapack_funcs(('pteqr'), dtype=dtype)
- n = 10
- d, e, A, z = pteqr_get_d_e_A_z(dtype, realtype, n, compute_z)
- # test with singular matrix
- d[0] = 0
- e[0] = 0
- d_pteqr, e_pteqr, z_pteqr, info = pteqr(d, e, z=z, compute_z=compute_z)
- assert info > 0
- @pytest.mark.parametrize("compute_z,d,e,d_expect,z_expect",
- [(2, # "I"
- np.array([4.16, 5.25, 1.09, .62]),
- np.array([3.17, -.97, .55]),
- np.array([8.0023, 1.9926, 1.0014, 0.1237]),
- np.array([[0.6326, 0.6245, -0.4191, 0.1847],
- [0.7668, -0.4270, 0.4176, -0.2352],
- [-0.1082, 0.6071, 0.4594, -0.6393],
- [-0.0081, 0.2432, 0.6625, 0.7084]])),
- ])
- def test_pteqr_NAG_f08jgf(compute_z, d, e, d_expect, z_expect):
- '''
- Implements real (f08jgf) example from NAG Manual Mark 26.
- Tests for correct outputs.
- '''
- # the NAG manual has 4 decimals accuracy
- atol = 1e-4
- pteqr = get_lapack_funcs(('pteqr'), dtype=d.dtype)
- z = np.diag(d) + np.diag(e, 1) + np.diag(e, -1)
- _d, _e, _z, info = pteqr(d=d, e=e, z=z, compute_z=compute_z)
- assert_allclose(_d, d_expect, atol=atol)
- assert_allclose(np.abs(_z), np.abs(z_expect), atol=atol)
- @pytest.mark.parametrize('dtype', DTYPES)
- @pytest.mark.parametrize('matrix_size', [(3, 4), (7, 6), (6, 6)])
- def test_geqrfp(dtype, matrix_size):
- # Tests for all dytpes, tall, wide, and square matrices.
- # Using the routine with random matrix A, Q and R are obtained and then
- # tested such that R is upper triangular and non-negative on the diagonal,
- # and Q is an orthagonal matrix. Verifies that A=Q@R. It also
- # tests against a matrix that for which the linalg.qr method returns
- # negative diagonals, and for error messaging.
- # set test tolerance appropriate for dtype
- np.random.seed(42)
- rtol = 250*np.finfo(dtype).eps
- atol = 100*np.finfo(dtype).eps
- # get appropriate ?geqrfp for dtype
- geqrfp = get_lapack_funcs(('geqrfp'), dtype=dtype)
- gqr = get_lapack_funcs(("orgqr"), dtype=dtype)
- m, n = matrix_size
- # create random matrix of dimentions m x n
- A = generate_random_dtype_array((m, n), dtype=dtype)
- # create qr matrix using geqrfp
- qr_A, tau, info = geqrfp(A)
- # obtain r from the upper triangular area
- r = np.triu(qr_A)
- # obtain q from the orgqr lapack routine
- # based on linalg.qr's extraction strategy of q with orgqr
- if m > n:
- # this adds an extra column to the end of qr_A
- # let qqr be an empty m x m matrix
- qqr = np.zeros((m, m), dtype=dtype)
- # set first n columns of qqr to qr_A
- qqr[:, :n] = qr_A
- # determine q from this qqr
- # note that m is a sufficient for lwork based on LAPACK documentation
- q = gqr(qqr, tau=tau, lwork=m)[0]
- else:
- q = gqr(qr_A[:, :m], tau=tau, lwork=m)[0]
- # test that q and r still make A
- assert_allclose(q@r, A, rtol=rtol)
- # ensure that q is orthogonal (that q @ transposed q is the identity)
- assert_allclose(np.eye(q.shape[0]), q@(q.conj().T), rtol=rtol,
- atol=atol)
- # ensure r is upper tri by comparing original r to r as upper triangular
- assert_allclose(r, np.triu(r), rtol=rtol)
- # make sure diagonals of r are positive for this random solution
- assert_(np.all(np.diag(r) > np.zeros(len(np.diag(r)))))
- # ensure that info is zero for this success
- assert_(info == 0)
- # test that this routine gives r diagonals that are positive for a
- # matrix that returns negatives in the diagonal with scipy.linalg.rq
- A_negative = generate_random_dtype_array((n, m), dtype=dtype) * -1
- r_rq_neg, q_rq_neg = qr(A_negative)
- rq_A_neg, tau_neg, info_neg = geqrfp(A_negative)
- # assert that any of the entries on the diagonal from linalg.qr
- # are negative and that all of geqrfp are positive.
- assert_(np.any(np.diag(r_rq_neg) < 0) and
- np.all(np.diag(r) > 0))
- def test_geqrfp_errors_with_empty_array():
- # check that empty array raises good error message
- A_empty = np.array([])
- geqrfp = get_lapack_funcs('geqrfp', dtype=A_empty.dtype)
- assert_raises(Exception, geqrfp, A_empty)
- @pytest.mark.parametrize("driver", ['ev', 'evd', 'evr', 'evx'])
- @pytest.mark.parametrize("pfx", ['sy', 'he'])
- def test_standard_eigh_lworks(pfx, driver):
- n = 1200 # Some sufficiently big arbitrary number
- dtype = REAL_DTYPES if pfx == 'sy' else COMPLEX_DTYPES
- sc_dlw = get_lapack_funcs(pfx+driver+'_lwork', dtype=dtype[0])
- dz_dlw = get_lapack_funcs(pfx+driver+'_lwork', dtype=dtype[1])
- try:
- _compute_lwork(sc_dlw, n, lower=1)
- _compute_lwork(dz_dlw, n, lower=1)
- except Exception as e:
- pytest.fail("{}_lwork raised unexpected exception: {}"
- "".format(pfx+driver, e))
- @pytest.mark.parametrize("driver", ['gv', 'gvx'])
- @pytest.mark.parametrize("pfx", ['sy', 'he'])
- def test_generalized_eigh_lworks(pfx, driver):
- n = 1200 # Some sufficiently big arbitrary number
- dtype = REAL_DTYPES if pfx == 'sy' else COMPLEX_DTYPES
- sc_dlw = get_lapack_funcs(pfx+driver+'_lwork', dtype=dtype[0])
- dz_dlw = get_lapack_funcs(pfx+driver+'_lwork', dtype=dtype[1])
- # Shouldn't raise any exceptions
- try:
- _compute_lwork(sc_dlw, n, uplo="L")
- _compute_lwork(dz_dlw, n, uplo="L")
- except Exception as e:
- pytest.fail("{}_lwork raised unexpected exception: {}"
- "".format(pfx+driver, e))
- @pytest.mark.parametrize("dtype_", DTYPES)
- @pytest.mark.parametrize("m", [1, 10, 100, 1000])
- def test_orcsd_uncsd_lwork(dtype_, m):
- seed(1234)
- p = randint(0, m)
- q = m - p
- pfx = 'or' if dtype_ in REAL_DTYPES else 'un'
- dlw = pfx + 'csd_lwork'
- lw = get_lapack_funcs(dlw, dtype=dtype_)
- lwval = _compute_lwork(lw, m, p, q)
- lwval = lwval if pfx == 'un' else (lwval,)
- assert all([x > 0 for x in lwval])
- @pytest.mark.parametrize("dtype_", DTYPES)
- def test_orcsd_uncsd(dtype_):
- m, p, q = 250, 80, 170
- pfx = 'or' if dtype_ in REAL_DTYPES else 'un'
- X = ortho_group.rvs(m) if pfx == 'or' else unitary_group.rvs(m)
- drv, dlw = get_lapack_funcs((pfx + 'csd', pfx + 'csd_lwork'), dtype=dtype_)
- lwval = _compute_lwork(dlw, m, p, q)
- lwvals = {'lwork': lwval} if pfx == 'or' else dict(zip(['lwork',
- 'lrwork'], lwval))
- cs11, cs12, cs21, cs22, theta, u1, u2, v1t, v2t, info =\
- drv(X[:p, :q], X[:p, q:], X[p:, :q], X[p:, q:], **lwvals)
- assert info == 0
- U = block_diag(u1, u2)
- VH = block_diag(v1t, v2t)
- r = min(min(p, q), min(m-p, m-q))
- n11 = min(p, q) - r
- n12 = min(p, m-q) - r
- n21 = min(m-p, q) - r
- n22 = min(m-p, m-q) - r
- S = np.zeros((m, m), dtype=dtype_)
- one = dtype_(1.)
- for i in range(n11):
- S[i, i] = one
- for i in range(n22):
- S[p+i, q+i] = one
- for i in range(n12):
- S[i+n11+r, i+n11+r+n21+n22+r] = -one
- for i in range(n21):
- S[p+n22+r+i, n11+r+i] = one
- for i in range(r):
- S[i+n11, i+n11] = np.cos(theta[i])
- S[p+n22+i, i+r+n21+n22] = np.cos(theta[i])
- S[i+n11, i+n11+n21+n22+r] = -np.sin(theta[i])
- S[p+n22+i, i+n11] = np.sin(theta[i])
- Xc = U @ S @ VH
- assert_allclose(X, Xc, rtol=0., atol=1e4*np.finfo(dtype_).eps)
- @pytest.mark.parametrize("dtype", DTYPES)
- @pytest.mark.parametrize("trans_bool", [False, True])
- @pytest.mark.parametrize("fact", ["F", "N"])
- def test_gtsvx(dtype, trans_bool, fact):
- """
- These tests uses ?gtsvx to solve a random Ax=b system for each dtype.
- It tests that the outputs define an LU matrix, that inputs are unmodified,
- transposal options, incompatible shapes, singular matrices, and
- singular factorizations. It parametrizes DTYPES and the 'fact' value along
- with the fact related inputs.
- """
- seed(42)
- # set test tolerance appropriate for dtype
- atol = 100 * np.finfo(dtype).eps
- # obtain routine
- gtsvx, gttrf = get_lapack_funcs(('gtsvx', 'gttrf'), dtype=dtype)
- # Generate random tridiagonal matrix A
- n = 10
- dl = generate_random_dtype_array((n-1,), dtype=dtype)
- d = generate_random_dtype_array((n,), dtype=dtype)
- du = generate_random_dtype_array((n-1,), dtype=dtype)
- A = np.diag(dl, -1) + np.diag(d) + np.diag(du, 1)
- # generate random solution x
- x = generate_random_dtype_array((n, 2), dtype=dtype)
- # create b from x for equation Ax=b
- trans = ("T" if dtype in REAL_DTYPES else "C") if trans_bool else "N"
- b = (A.conj().T if trans_bool else A) @ x
- # store a copy of the inputs to check they haven't been modified later
- inputs_cpy = [dl.copy(), d.copy(), du.copy(), b.copy()]
- # set these to None if fact = 'N', or the output of gttrf is fact = 'F'
- dlf_, df_, duf_, du2f_, ipiv_, info_ = \
- gttrf(dl, d, du) if fact == 'F' else [None]*6
- gtsvx_out = gtsvx(dl, d, du, b, fact=fact, trans=trans, dlf=dlf_, df=df_,
- duf=duf_, du2=du2f_, ipiv=ipiv_)
- dlf, df, duf, du2f, ipiv, x_soln, rcond, ferr, berr, info = gtsvx_out
- assert_(info == 0, "?gtsvx info = {}, should be zero".format(info))
- # assure that inputs are unmodified
- assert_array_equal(dl, inputs_cpy[0])
- assert_array_equal(d, inputs_cpy[1])
- assert_array_equal(du, inputs_cpy[2])
- assert_array_equal(b, inputs_cpy[3])
- # test that x_soln matches the expected x
- assert_allclose(x, x_soln, atol=atol)
- # assert that the outputs are of correct type or shape
- # rcond should be a scalar
- assert_(hasattr(rcond, "__len__") is not True,
- "rcond should be scalar but is {}".format(rcond))
- # ferr should be length of # of cols in x
- assert_(ferr.shape[0] == b.shape[1], "ferr.shape is {} but shoud be {},"
- .format(ferr.shape[0], b.shape[1]))
- # berr should be length of # of cols in x
- assert_(berr.shape[0] == b.shape[1], "berr.shape is {} but shoud be {},"
- .format(berr.shape[0], b.shape[1]))
- @pytest.mark.parametrize("dtype", DTYPES)
- @pytest.mark.parametrize("trans_bool", [0, 1])
- @pytest.mark.parametrize("fact", ["F", "N"])
- def test_gtsvx_error_singular(dtype, trans_bool, fact):
- seed(42)
- # obtain routine
- gtsvx, gttrf = get_lapack_funcs(('gtsvx', 'gttrf'), dtype=dtype)
- # Generate random tridiagonal matrix A
- n = 10
- dl = generate_random_dtype_array((n-1,), dtype=dtype)
- d = generate_random_dtype_array((n,), dtype=dtype)
- du = generate_random_dtype_array((n-1,), dtype=dtype)
- A = np.diag(dl, -1) + np.diag(d) + np.diag(du, 1)
- # generate random solution x
- x = generate_random_dtype_array((n, 2), dtype=dtype)
- # create b from x for equation Ax=b
- trans = "T" if dtype in REAL_DTYPES else "C"
- b = (A.conj().T if trans_bool else A) @ x
- # set these to None if fact = 'N', or the output of gttrf is fact = 'F'
- dlf_, df_, duf_, du2f_, ipiv_, info_ = \
- gttrf(dl, d, du) if fact == 'F' else [None]*6
- gtsvx_out = gtsvx(dl, d, du, b, fact=fact, trans=trans, dlf=dlf_, df=df_,
- duf=duf_, du2=du2f_, ipiv=ipiv_)
- dlf, df, duf, du2f, ipiv, x_soln, rcond, ferr, berr, info = gtsvx_out
- # test with singular matrix
- # no need to test inputs with fact "F" since ?gttrf already does.
- if fact == "N":
- # Construct a singular example manually
- d[-1] = 0
- dl[-1] = 0
- # solve using routine
- gtsvx_out = gtsvx(dl, d, du, b)
- dlf, df, duf, du2f, ipiv, x_soln, rcond, ferr, berr, info = gtsvx_out
- # test for the singular matrix.
- assert info > 0, "info should be > 0 for singular matrix"
- elif fact == 'F':
- # assuming that a singular factorization is input
- df_[-1] = 0
- duf_[-1] = 0
- du2f_[-1] = 0
- gtsvx_out = gtsvx(dl, d, du, b, fact=fact, dlf=dlf_, df=df_, duf=duf_,
- du2=du2f_, ipiv=ipiv_)
- dlf, df, duf, du2f, ipiv, x_soln, rcond, ferr, berr, info = gtsvx_out
- # info should not be zero and should provide index of illegal value
- assert info > 0, "info should be > 0 for singular matrix"
- @pytest.mark.parametrize("dtype", DTYPES*2)
- @pytest.mark.parametrize("trans_bool", [False, True])
- @pytest.mark.parametrize("fact", ["F", "N"])
- def test_gtsvx_error_incompatible_size(dtype, trans_bool, fact):
- seed(42)
- # obtain routine
- gtsvx, gttrf = get_lapack_funcs(('gtsvx', 'gttrf'), dtype=dtype)
- # Generate random tridiagonal matrix A
- n = 10
- dl = generate_random_dtype_array((n-1,), dtype=dtype)
- d = generate_random_dtype_array((n,), dtype=dtype)
- du = generate_random_dtype_array((n-1,), dtype=dtype)
- A = np.diag(dl, -1) + np.diag(d) + np.diag(du, 1)
- # generate random solution x
- x = generate_random_dtype_array((n, 2), dtype=dtype)
- # create b from x for equation Ax=b
- trans = "T" if dtype in REAL_DTYPES else "C"
- b = (A.conj().T if trans_bool else A) @ x
- # set these to None if fact = 'N', or the output of gttrf is fact = 'F'
- dlf_, df_, duf_, du2f_, ipiv_, info_ = \
- gttrf(dl, d, du) if fact == 'F' else [None]*6
- if fact == "N":
- assert_raises(ValueError, gtsvx, dl[:-1], d, du, b,
- fact=fact, trans=trans, dlf=dlf_, df=df_,
- duf=duf_, du2=du2f_, ipiv=ipiv_)
- assert_raises(ValueError, gtsvx, dl, d[:-1], du, b,
- fact=fact, trans=trans, dlf=dlf_, df=df_,
- duf=duf_, du2=du2f_, ipiv=ipiv_)
- assert_raises(ValueError, gtsvx, dl, d, du[:-1], b,
- fact=fact, trans=trans, dlf=dlf_, df=df_,
- duf=duf_, du2=du2f_, ipiv=ipiv_)
- assert_raises(Exception, gtsvx, dl, d, du, b[:-1],
- fact=fact, trans=trans, dlf=dlf_, df=df_,
- duf=duf_, du2=du2f_, ipiv=ipiv_)
- else:
- assert_raises(ValueError, gtsvx, dl, d, du, b,
- fact=fact, trans=trans, dlf=dlf_[:-1], df=df_,
- duf=duf_, du2=du2f_, ipiv=ipiv_)
- assert_raises(ValueError, gtsvx, dl, d, du, b,
- fact=fact, trans=trans, dlf=dlf_, df=df_[:-1],
- duf=duf_, du2=du2f_, ipiv=ipiv_)
- assert_raises(ValueError, gtsvx, dl, d, du, b,
- fact=fact, trans=trans, dlf=dlf_, df=df_,
- duf=duf_[:-1], du2=du2f_, ipiv=ipiv_)
- assert_raises(ValueError, gtsvx, dl, d, du, b,
- fact=fact, trans=trans, dlf=dlf_, df=df_,
- duf=duf_, du2=du2f_[:-1], ipiv=ipiv_)
- @pytest.mark.parametrize("du,d,dl,b,x",
- [(np.array([2.1, -1.0, 1.9, 8.0]),
- np.array([3.0, 2.3, -5.0, -0.9, 7.1]),
- np.array([3.4, 3.6, 7.0, -6.0]),
- np.array([[2.7, 6.6], [-.5, 10.8], [2.6, -3.2],
- [.6, -11.2], [2.7, 19.1]]),
- np.array([[-4, 5], [7, -4], [3, -3], [-4, -2],
- [-3, 1]])),
- (np.array([2 - 1j, 2 + 1j, -1 + 1j, 1 - 1j]),
- np.array([-1.3 + 1.3j, -1.3 + 1.3j, -1.3 + 3.3j,
- -.3 + 4.3j, -3.3 + 1.3j]),
- np.array([1 - 2j, 1 + 1j, 2 - 3j, 1 + 1j]),
- np.array([[2.4 - 5j, 2.7 + 6.9j],
- [3.4 + 18.2j, -6.9 - 5.3j],
- [-14.7 + 9.7j, -6 - .6j],
- [31.9 - 7.7j, -3.9 + 9.3j],
- [-1 + 1.6j, -3 + 12.2j]]),
- np.array([[1 + 1j, 2 - 1j], [3 - 1j, 1 + 2j],
- [4 + 5j, -1 + 1j], [-1 - 2j, 2 + 1j],
- [1 - 1j, 2 - 2j]]))])
- def test_gtsvx_NAG(du, d, dl, b, x):
- # Test to ensure wrapper is consistent with NAG Manual Mark 26
- # example problems: real (f07cbf) and complex (f07cpf)
- gtsvx = get_lapack_funcs('gtsvx', dtype=d.dtype)
- gtsvx_out = gtsvx(dl, d, du, b)
- dlf, df, duf, du2f, ipiv, x_soln, rcond, ferr, berr, info = gtsvx_out
- assert_array_almost_equal(x, x_soln)
- @pytest.mark.parametrize("dtype,realtype", zip(DTYPES, REAL_DTYPES
- + REAL_DTYPES))
- @pytest.mark.parametrize("fact,df_de_lambda",
- [("F",
- lambda d, e:get_lapack_funcs('pttrf',
- dtype=e.dtype)(d, e)),
- ("N", lambda d, e: (None, None, None))])
- def test_ptsvx(dtype, realtype, fact, df_de_lambda):
- '''
- This tests the ?ptsvx lapack routine wrapper to solve a random system
- Ax = b for all dtypes and input variations. Tests for: unmodified
- input parameters, fact options, incompatible matrix shapes raise an error,
- and singular matrices return info of illegal value.
- '''
- seed(42)
- # set test tolerance appropriate for dtype
- atol = 100 * np.finfo(dtype).eps
- ptsvx = get_lapack_funcs('ptsvx', dtype=dtype)
- n = 5
- # create diagonals according to size and dtype
- d = generate_random_dtype_array((n,), realtype) + 4
- e = generate_random_dtype_array((n-1,), dtype)
- A = np.diag(d) + np.diag(e, -1) + np.diag(np.conj(e), 1)
- x_soln = generate_random_dtype_array((n, 2), dtype=dtype)
- b = A @ x_soln
- # use lambda to determine what df, ef are
- df, ef, info = df_de_lambda(d, e)
- # create copy to later test that they are unmodified
- diag_cpy = [d.copy(), e.copy(), b.copy()]
- # solve using routine
- df, ef, x, rcond, ferr, berr, info = ptsvx(d, e, b, fact=fact,
- df=df, ef=ef)
- # d, e, and b should be unmodified
- assert_array_equal(d, diag_cpy[0])
- assert_array_equal(e, diag_cpy[1])
- assert_array_equal(b, diag_cpy[2])
- assert_(info == 0, "info should be 0 but is {}.".format(info))
- assert_array_almost_equal(x_soln, x)
- # test that the factors from ptsvx can be recombined to make A
- L = np.diag(ef, -1) + np.diag(np.ones(n))
- D = np.diag(df)
- assert_allclose(A, L@D@(np.conj(L).T), atol=atol)
- # assert that the outputs are of correct type or shape
- # rcond should be a scalar
- assert not hasattr(rcond, "__len__"), \
- "rcond should be scalar but is {}".format(rcond)
- # ferr should be length of # of cols in x
- assert_(ferr.shape == (2,), "ferr.shape is {} but shoud be ({},)"
- .format(ferr.shape, x_soln.shape[1]))
- # berr should be length of # of cols in x
- assert_(berr.shape == (2,), "berr.shape is {} but shoud be ({},)"
- .format(berr.shape, x_soln.shape[1]))
- @pytest.mark.parametrize("dtype,realtype", zip(DTYPES, REAL_DTYPES
- + REAL_DTYPES))
- @pytest.mark.parametrize("fact,df_de_lambda",
- [("F",
- lambda d, e:get_lapack_funcs('pttrf',
- dtype=e.dtype)(d, e)),
- ("N", lambda d, e: (None, None, None))])
- def test_ptsvx_error_raise_errors(dtype, realtype, fact, df_de_lambda):
- seed(42)
- ptsvx = get_lapack_funcs('ptsvx', dtype=dtype)
- n = 5
- # create diagonals according to size and dtype
- d = generate_random_dtype_array((n,), realtype) + 4
- e = generate_random_dtype_array((n-1,), dtype)
- A = np.diag(d) + np.diag(e, -1) + np.diag(np.conj(e), 1)
- x_soln = generate_random_dtype_array((n, 2), dtype=dtype)
- b = A @ x_soln
- # use lambda to determine what df, ef are
- df, ef, info = df_de_lambda(d, e)
- # test with malformatted array sizes
- assert_raises(ValueError, ptsvx, d[:-1], e, b, fact=fact, df=df, ef=ef)
- assert_raises(ValueError, ptsvx, d, e[:-1], b, fact=fact, df=df, ef=ef)
- assert_raises(Exception, ptsvx, d, e, b[:-1], fact=fact, df=df, ef=ef)
- @pytest.mark.parametrize("dtype,realtype", zip(DTYPES, REAL_DTYPES
- + REAL_DTYPES))
- @pytest.mark.parametrize("fact,df_de_lambda",
- [("F",
- lambda d, e:get_lapack_funcs('pttrf',
- dtype=e.dtype)(d, e)),
- ("N", lambda d, e: (None, None, None))])
- def test_ptsvx_non_SPD_singular(dtype, realtype, fact, df_de_lambda):
- seed(42)
- ptsvx = get_lapack_funcs('ptsvx', dtype=dtype)
- n = 5
- # create diagonals according to size and dtype
- d = generate_random_dtype_array((n,), realtype) + 4
- e = generate_random_dtype_array((n-1,), dtype)
- A = np.diag(d) + np.diag(e, -1) + np.diag(np.conj(e), 1)
- x_soln = generate_random_dtype_array((n, 2), dtype=dtype)
- b = A @ x_soln
- # use lambda to determine what df, ef are
- df, ef, info = df_de_lambda(d, e)
- if fact == "N":
- d[3] = 0
- # obtain new df, ef
- df, ef, info = df_de_lambda(d, e)
- # solve using routine
- df, ef, x, rcond, ferr, berr, info = ptsvx(d, e, b)
- # test for the singular matrix.
- assert info > 0 and info <= n
- # non SPD matrix
- d = generate_random_dtype_array((n,), realtype)
- df, ef, x, rcond, ferr, berr, info = ptsvx(d, e, b)
- assert info > 0 and info <= n
- else:
- # assuming that someone is using a singular factorization
- df, ef, info = df_de_lambda(d, e)
- df[0] = 0
- ef[0] = 0
- df, ef, x, rcond, ferr, berr, info = ptsvx(d, e, b, fact=fact,
- df=df, ef=ef)
- assert info > 0
- @pytest.mark.parametrize('d,e,b,x',
- [(np.array([4, 10, 29, 25, 5]),
- np.array([-2, -6, 15, 8]),
- np.array([[6, 10], [9, 4], [2, 9], [14, 65],
- [7, 23]]),
- np.array([[2.5, 2], [2, -1], [1, -3],
- [-1, 6], [3, -5]])),
- (np.array([16, 41, 46, 21]),
- np.array([16 + 16j, 18 - 9j, 1 - 4j]),
- np.array([[64 + 16j, -16 - 32j],
- [93 + 62j, 61 - 66j],
- [78 - 80j, 71 - 74j],
- [14 - 27j, 35 + 15j]]),
- np.array([[2 + 1j, -3 - 2j],
- [1 + 1j, 1 + 1j],
- [1 - 2j, 1 - 2j],
- [1 - 1j, 2 + 1j]]))])
- def test_ptsvx_NAG(d, e, b, x):
- # test to assure that wrapper is consistent with NAG Manual Mark 26
- # example problemss: f07jbf, f07jpf
- # (Links expire, so please search for "NAG Library Manual Mark 26" online)
- # obtain routine with correct type based on e.dtype
- ptsvx = get_lapack_funcs('ptsvx', dtype=e.dtype)
- # solve using routine
- df, ef, x_ptsvx, rcond, ferr, berr, info = ptsvx(d, e, b)
- # determine ptsvx's solution and x are the same.
- assert_array_almost_equal(x, x_ptsvx)
- @pytest.mark.parametrize('lower', [False, True])
- @pytest.mark.parametrize('dtype', DTYPES)
- def test_pptrs_pptri_pptrf_ppsv_ppcon(dtype, lower):
- seed(1234)
- atol = np.finfo(dtype).eps*100
- # Manual conversion to/from packed format is feasible here.
- n, nrhs = 10, 4
- a = generate_random_dtype_array([n, n], dtype=dtype)
- b = generate_random_dtype_array([n, nrhs], dtype=dtype)
- a = a.conj().T + a + np.eye(n, dtype=dtype) * dtype(5.)
- if lower:
- inds = ([x for y in range(n) for x in range(y, n)],
- [y for y in range(n) for x in range(y, n)])
- else:
- inds = ([x for y in range(1, n+1) for x in range(y)],
- [y-1 for y in range(1, n+1) for x in range(y)])
- ap = a[inds]
- ppsv, pptrf, pptrs, pptri, ppcon = get_lapack_funcs(
- ('ppsv', 'pptrf', 'pptrs', 'pptri', 'ppcon'),
- dtype=dtype,
- ilp64="preferred")
- ul, info = pptrf(n, ap, lower=lower)
- assert_equal(info, 0)
- aul = cholesky(a, lower=lower)[inds]
- assert_allclose(ul, aul, rtol=0, atol=atol)
- uli, info = pptri(n, ul, lower=lower)
- assert_equal(info, 0)
- auli = inv(a)[inds]
- assert_allclose(uli, auli, rtol=0, atol=atol)
- x, info = pptrs(n, ul, b, lower=lower)
- assert_equal(info, 0)
- bx = solve(a, b)
- assert_allclose(x, bx, rtol=0, atol=atol)
- xv, info = ppsv(n, ap, b, lower=lower)
- assert_equal(info, 0)
- assert_allclose(xv, bx, rtol=0, atol=atol)
- anorm = np.linalg.norm(a, 1)
- rcond, info = ppcon(n, ap, anorm=anorm, lower=lower)
- assert_equal(info, 0)
- assert_(abs(1/rcond - np.linalg.cond(a, p=1))*rcond < 1)
- @pytest.mark.parametrize('dtype', DTYPES)
- def test_gees_trexc(dtype):
- seed(1234)
- atol = np.finfo(dtype).eps*100
- n = 10
- a = generate_random_dtype_array([n, n], dtype=dtype)
- gees, trexc = get_lapack_funcs(('gees', 'trexc'), dtype=dtype)
- result = gees(lambda x: None, a, overwrite_a=False)
- assert_equal(result[-1], 0)
- t = result[0]
- z = result[-3]
- d2 = t[6, 6]
- if dtype in COMPLEX_DTYPES:
- assert_allclose(t, np.triu(t), rtol=0, atol=atol)
- assert_allclose(z @ t @ z.conj().T, a, rtol=0, atol=atol)
- result = trexc(t, z, 7, 1)
- assert_equal(result[-1], 0)
- t = result[0]
- z = result[-2]
- if dtype in COMPLEX_DTYPES:
- assert_allclose(t, np.triu(t), rtol=0, atol=atol)
- assert_allclose(z @ t @ z.conj().T, a, rtol=0, atol=atol)
- assert_allclose(t[0, 0], d2, rtol=0, atol=atol)
- @pytest.mark.parametrize(
- "t, expect, ifst, ilst",
- [(np.array([[0.80, -0.11, 0.01, 0.03],
- [0.00, -0.10, 0.25, 0.35],
- [0.00, -0.65, -0.10, 0.20],
- [0.00, 0.00, 0.00, -0.10]]),
- np.array([[-0.1000, -0.6463, 0.0874, 0.2010],
- [0.2514, -0.1000, 0.0927, 0.3505],
- [0.0000, 0.0000, 0.8000, -0.0117],
- [0.0000, 0.0000, 0.0000, -0.1000]]),
- 2, 1),
- (np.array([[-6.00 - 7.00j, 0.36 - 0.36j, -0.19 + 0.48j, 0.88 - 0.25j],
- [0.00 + 0.00j, -5.00 + 2.00j, -0.03 - 0.72j, -0.23 + 0.13j],
- [0.00 + 0.00j, 0.00 + 0.00j, 8.00 - 1.00j, 0.94 + 0.53j],
- [0.00 + 0.00j, 0.00 + 0.00j, 0.00 + 0.00j, 3.00 - 4.00j]]),
- np.array([[-5.0000 + 2.0000j, -0.1574 + 0.7143j,
- 0.1781 - 0.1913j, 0.3950 + 0.3861j],
- [0.0000 + 0.0000j, 8.0000 - 1.0000j,
- 1.0742 + 0.1447j, 0.2515 - 0.3397j],
- [0.0000 + 0.0000j, 0.0000 + 0.0000j,
- 3.0000 - 4.0000j, 0.2264 + 0.8962j],
- [0.0000 + 0.0000j, 0.0000 + 0.0000j,
- 0.0000 + 0.0000j, -6.0000 - 7.0000j]]),
- 1, 4)])
- def test_trexc_NAG(t, ifst, ilst, expect):
- """
- This test implements the example found in the NAG manual,
- f08qfc, f08qtc, f08qgc, f08quc.
- """
- # NAG manual provides accuracy up to 4 decimals
- atol = 1e-4
- trexc = get_lapack_funcs('trexc', dtype=t.dtype)
- result = trexc(t, t, ifst, ilst, wantq=0)
- assert_equal(result[-1], 0)
- t = result[0]
- assert_allclose(expect, t, atol=atol)
- @pytest.mark.parametrize('dtype', DTYPES)
- def test_gges_tgexc(dtype):
- if dtype == np.float32 and sys.platform == 'darwin':
- pytest.xfail("gges[float32] broken for OpenBLAS on macOS, see gh-16949")
- seed(1234)
- atol = np.finfo(dtype).eps*100
- n = 10
- a = generate_random_dtype_array([n, n], dtype=dtype)
- b = generate_random_dtype_array([n, n], dtype=dtype)
- gges, tgexc = get_lapack_funcs(('gges', 'tgexc'), dtype=dtype)
- result = gges(lambda x: None, a, b, overwrite_a=False, overwrite_b=False)
- assert_equal(result[-1], 0)
- s = result[0]
- t = result[1]
- q = result[-4]
- z = result[-3]
- d1 = s[0, 0] / t[0, 0]
- d2 = s[6, 6] / t[6, 6]
- if dtype in COMPLEX_DTYPES:
- assert_allclose(s, np.triu(s), rtol=0, atol=atol)
- assert_allclose(t, np.triu(t), rtol=0, atol=atol)
- assert_allclose(q @ s @ z.conj().T, a, rtol=0, atol=atol)
- assert_allclose(q @ t @ z.conj().T, b, rtol=0, atol=atol)
- result = tgexc(s, t, q, z, 7, 1)
- assert_equal(result[-1], 0)
- s = result[0]
- t = result[1]
- q = result[2]
- z = result[3]
- if dtype in COMPLEX_DTYPES:
- assert_allclose(s, np.triu(s), rtol=0, atol=atol)
- assert_allclose(t, np.triu(t), rtol=0, atol=atol)
- assert_allclose(q @ s @ z.conj().T, a, rtol=0, atol=atol)
- assert_allclose(q @ t @ z.conj().T, b, rtol=0, atol=atol)
- assert_allclose(s[0, 0] / t[0, 0], d2, rtol=0, atol=atol)
- assert_allclose(s[1, 1] / t[1, 1], d1, rtol=0, atol=atol)
- @pytest.mark.parametrize('dtype', DTYPES)
- def test_gees_trsen(dtype):
- seed(1234)
- atol = np.finfo(dtype).eps*100
- n = 10
- a = generate_random_dtype_array([n, n], dtype=dtype)
- gees, trsen, trsen_lwork = get_lapack_funcs(
- ('gees', 'trsen', 'trsen_lwork'), dtype=dtype)
- result = gees(lambda x: None, a, overwrite_a=False)
- assert_equal(result[-1], 0)
- t = result[0]
- z = result[-3]
- d2 = t[6, 6]
- if dtype in COMPLEX_DTYPES:
- assert_allclose(t, np.triu(t), rtol=0, atol=atol)
- assert_allclose(z @ t @ z.conj().T, a, rtol=0, atol=atol)
- select = np.zeros(n)
- select[6] = 1
- lwork = _compute_lwork(trsen_lwork, select, t)
- if dtype in COMPLEX_DTYPES:
- result = trsen(select, t, z, lwork=lwork)
- else:
- result = trsen(select, t, z, lwork=lwork, liwork=lwork[1])
- assert_equal(result[-1], 0)
- t = result[0]
- z = result[1]
- if dtype in COMPLEX_DTYPES:
- assert_allclose(t, np.triu(t), rtol=0, atol=atol)
- assert_allclose(z @ t @ z.conj().T, a, rtol=0, atol=atol)
- assert_allclose(t[0, 0], d2, rtol=0, atol=atol)
- @pytest.mark.parametrize(
- "t, q, expect, select, expect_s, expect_sep",
- [(np.array([[0.7995, -0.1144, 0.0060, 0.0336],
- [0.0000, -0.0994, 0.2478, 0.3474],
- [0.0000, -0.6483, -0.0994, 0.2026],
- [0.0000, 0.0000, 0.0000, -0.1007]]),
- np.array([[0.6551, 0.1037, 0.3450, 0.6641],
- [0.5236, -0.5807, -0.6141, -0.1068],
- [-0.5362, -0.3073, -0.2935, 0.7293],
- [0.0956, 0.7467, -0.6463, 0.1249]]),
- np.array([[0.3500, 0.4500, -0.1400, -0.1700],
- [0.0900, 0.0700, -0.5399, 0.3500],
- [-0.4400, -0.3300, -0.0300, 0.1700],
- [0.2500, -0.3200, -0.1300, 0.1100]]),
- np.array([1, 0, 0, 1]),
- 1.75e+00, 3.22e+00),
- (np.array([[-6.0004 - 6.9999j, 0.3637 - 0.3656j,
- -0.1880 + 0.4787j, 0.8785 - 0.2539j],
- [0.0000 + 0.0000j, -5.0000 + 2.0060j,
- -0.0307 - 0.7217j, -0.2290 + 0.1313j],
- [0.0000 + 0.0000j, 0.0000 + 0.0000j,
- 7.9982 - 0.9964j, 0.9357 + 0.5359j],
- [0.0000 + 0.0000j, 0.0000 + 0.0000j,
- 0.0000 + 0.0000j, 3.0023 - 3.9998j]]),
- np.array([[-0.8347 - 0.1364j, -0.0628 + 0.3806j,
- 0.2765 - 0.0846j, 0.0633 - 0.2199j],
- [0.0664 - 0.2968j, 0.2365 + 0.5240j,
- -0.5877 - 0.4208j, 0.0835 + 0.2183j],
- [-0.0362 - 0.3215j, 0.3143 - 0.5473j,
- 0.0576 - 0.5736j, 0.0057 - 0.4058j],
- [0.0086 + 0.2958j, -0.3416 - 0.0757j,
- -0.1900 - 0.1600j, 0.8327 - 0.1868j]]),
- np.array([[-3.9702 - 5.0406j, -4.1108 + 3.7002j,
- -0.3403 + 1.0098j, 1.2899 - 0.8590j],
- [0.3397 - 1.5006j, 1.5201 - 0.4301j,
- 1.8797 - 5.3804j, 3.3606 + 0.6498j],
- [3.3101 - 3.8506j, 2.4996 + 3.4504j,
- 0.8802 - 1.0802j, 0.6401 - 1.4800j],
- [-1.0999 + 0.8199j, 1.8103 - 1.5905j,
- 3.2502 + 1.3297j, 1.5701 - 3.4397j]]),
- np.array([1, 0, 0, 1]),
- 1.02e+00, 1.82e-01)])
- def test_trsen_NAG(t, q, select, expect, expect_s, expect_sep):
- """
- This test implements the example found in the NAG manual,
- f08qgc, f08quc.
- """
- # NAG manual provides accuracy up to 4 and 2 decimals
- atol = 1e-4
- atol2 = 1e-2
- trsen, trsen_lwork = get_lapack_funcs(
- ('trsen', 'trsen_lwork'), dtype=t.dtype)
- lwork = _compute_lwork(trsen_lwork, select, t)
- if t.dtype in COMPLEX_DTYPES:
- result = trsen(select, t, q, lwork=lwork)
- else:
- result = trsen(select, t, q, lwork=lwork, liwork=lwork[1])
- assert_equal(result[-1], 0)
- t = result[0]
- q = result[1]
- if t.dtype in COMPLEX_DTYPES:
- s = result[4]
- sep = result[5]
- else:
- s = result[5]
- sep = result[6]
- assert_allclose(expect, q @ t @ q.conj().T, atol=atol)
- assert_allclose(expect_s, 1 / s, atol=atol2)
- assert_allclose(expect_sep, 1 / sep, atol=atol2)
- @pytest.mark.parametrize('dtype', DTYPES)
- def test_gges_tgsen(dtype):
- if dtype == np.float32 and sys.platform == 'darwin':
- pytest.xfail("gges[float32] broken for OpenBLAS on macOS, see gh-16949")
- seed(1234)
- atol = np.finfo(dtype).eps*100
- n = 10
- a = generate_random_dtype_array([n, n], dtype=dtype)
- b = generate_random_dtype_array([n, n], dtype=dtype)
- gges, tgsen, tgsen_lwork = get_lapack_funcs(
- ('gges', 'tgsen', 'tgsen_lwork'), dtype=dtype)
- result = gges(lambda x: None, a, b, overwrite_a=False, overwrite_b=False)
- assert_equal(result[-1], 0)
- s = result[0]
- t = result[1]
- q = result[-4]
- z = result[-3]
- d1 = s[0, 0] / t[0, 0]
- d2 = s[6, 6] / t[6, 6]
- if dtype in COMPLEX_DTYPES:
- assert_allclose(s, np.triu(s), rtol=0, atol=atol)
- assert_allclose(t, np.triu(t), rtol=0, atol=atol)
- assert_allclose(q @ s @ z.conj().T, a, rtol=0, atol=atol)
- assert_allclose(q @ t @ z.conj().T, b, rtol=0, atol=atol)
- select = np.zeros(n)
- select[6] = 1
- lwork = _compute_lwork(tgsen_lwork, select, s, t)
- # off-by-one error in LAPACK, see gh-issue #13397
- lwork = (lwork[0]+1, lwork[1])
- result = tgsen(select, s, t, q, z, lwork=lwork)
- assert_equal(result[-1], 0)
- s = result[0]
- t = result[1]
- q = result[-7]
- z = result[-6]
- if dtype in COMPLEX_DTYPES:
- assert_allclose(s, np.triu(s), rtol=0, atol=atol)
- assert_allclose(t, np.triu(t), rtol=0, atol=atol)
- assert_allclose(q @ s @ z.conj().T, a, rtol=0, atol=atol)
- assert_allclose(q @ t @ z.conj().T, b, rtol=0, atol=atol)
- assert_allclose(s[0, 0] / t[0, 0], d2, rtol=0, atol=atol)
- assert_allclose(s[1, 1] / t[1, 1], d1, rtol=0, atol=atol)
|