123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241 |
- #******************************************************************************
- # Copyright (C) 2013 Kenneth L. Ho
- # Redistribution and use in source and binary forms, with or without
- # modification, are permitted provided that the following conditions are met:
- #
- # Redistributions of source code must retain the above copyright notice, this
- # list of conditions and the following disclaimer. Redistributions in binary
- # form must reproduce the above copyright notice, this list of conditions and
- # the following disclaimer in the documentation and/or other materials
- # provided with the distribution.
- #
- # None of the names of the copyright holders may be used to endorse or
- # promote products derived from this software without specific prior written
- # permission.
- #
- # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
- # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- # POSSIBILITY OF SUCH DAMAGE.
- #******************************************************************************
- import scipy.linalg.interpolative as pymatrixid
- import numpy as np
- from scipy.linalg import hilbert, svdvals, norm
- from scipy.sparse.linalg import aslinearoperator
- from scipy.linalg.interpolative import interp_decomp
- from numpy.testing import (assert_, assert_allclose, assert_equal,
- assert_array_equal)
- import pytest
- from pytest import raises as assert_raises
- import sys
- _IS_32BIT = (sys.maxsize < 2**32)
- @pytest.fixture()
- def eps():
- yield 1e-12
- @pytest.fixture(params=[np.float64, np.complex128])
- def A(request):
- # construct Hilbert matrix
- # set parameters
- n = 300
- yield hilbert(n).astype(request.param)
- @pytest.fixture()
- def L(A):
- yield aslinearoperator(A)
- @pytest.fixture()
- def rank(A, eps):
- S = np.linalg.svd(A, compute_uv=False)
- try:
- rank = np.nonzero(S < eps)[0][0]
- except IndexError:
- rank = A.shape[0]
- return rank
- class TestInterpolativeDecomposition:
- @pytest.mark.parametrize(
- "rand,lin_op",
- [(False, False), (True, False), (True, True)])
- def test_real_id_fixed_precision(self, A, L, eps, rand, lin_op):
- if _IS_32BIT and A.dtype == np.complex_ and rand:
- pytest.xfail("bug in external fortran code")
- # Test ID routines on a Hilbert matrix.
- A_or_L = A if not lin_op else L
- k, idx, proj = pymatrixid.interp_decomp(A_or_L, eps, rand=rand)
- B = pymatrixid.reconstruct_matrix_from_id(A[:, idx[:k]], idx, proj)
- assert_allclose(A, B, rtol=eps, atol=1e-08)
- @pytest.mark.parametrize(
- "rand,lin_op",
- [(False, False), (True, False), (True, True)])
- def test_real_id_fixed_rank(self, A, L, eps, rank, rand, lin_op):
- if _IS_32BIT and A.dtype == np.complex_ and rand:
- pytest.xfail("bug in external fortran code")
- k = rank
- A_or_L = A if not lin_op else L
- idx, proj = pymatrixid.interp_decomp(A_or_L, k, rand=rand)
- B = pymatrixid.reconstruct_matrix_from_id(A[:, idx[:k]], idx, proj)
- assert_allclose(A, B, rtol=eps, atol=1e-08)
- @pytest.mark.parametrize("rand,lin_op", [(False, False)])
- def test_real_id_skel_and_interp_matrices(
- self, A, L, eps, rank, rand, lin_op):
- k = rank
- A_or_L = A if not lin_op else L
- idx, proj = pymatrixid.interp_decomp(A_or_L, k, rand=rand)
- P = pymatrixid.reconstruct_interp_matrix(idx, proj)
- B = pymatrixid.reconstruct_skel_matrix(A, k, idx)
- assert_allclose(B, A[:, idx[:k]], rtol=eps, atol=1e-08)
- assert_allclose(B @ P, A, rtol=eps, atol=1e-08)
- @pytest.mark.parametrize(
- "rand,lin_op",
- [(False, False), (True, False), (True, True)])
- def test_svd_fixed_precison(self, A, L, eps, rand, lin_op):
- if _IS_32BIT and A.dtype == np.complex_ and rand:
- pytest.xfail("bug in external fortran code")
- A_or_L = A if not lin_op else L
- U, S, V = pymatrixid.svd(A_or_L, eps, rand=rand)
- B = U * S @ V.T.conj()
- assert_allclose(A, B, rtol=eps, atol=1e-08)
- @pytest.mark.parametrize(
- "rand,lin_op",
- [(False, False), (True, False), (True, True)])
- def test_svd_fixed_rank(self, A, L, eps, rank, rand, lin_op):
- if _IS_32BIT and A.dtype == np.complex_ and rand:
- pytest.xfail("bug in external fortran code")
- k = rank
- A_or_L = A if not lin_op else L
- U, S, V = pymatrixid.svd(A_or_L, k, rand=rand)
- B = U * S @ V.T.conj()
- assert_allclose(A, B, rtol=eps, atol=1e-08)
- def test_id_to_svd(self, A, eps, rank):
- k = rank
- idx, proj = pymatrixid.interp_decomp(A, k, rand=False)
- U, S, V = pymatrixid.id_to_svd(A[:, idx[:k]], idx, proj)
- B = U * S @ V.T.conj()
- assert_allclose(A, B, rtol=eps, atol=1e-08)
- def test_estimate_spectral_norm(self, A):
- s = svdvals(A)
- norm_2_est = pymatrixid.estimate_spectral_norm(A)
- assert_allclose(norm_2_est, s[0], rtol=1e-6, atol=1e-8)
- def test_estimate_spectral_norm_diff(self, A):
- B = A.copy()
- B[:, 0] *= 1.2
- s = svdvals(A - B)
- norm_2_est = pymatrixid.estimate_spectral_norm_diff(A, B)
- assert_allclose(norm_2_est, s[0], rtol=1e-6, atol=1e-8)
- def test_rank_estimates_array(self, A):
- B = np.array([[1, 1, 0], [0, 0, 1], [0, 0, 1]], dtype=A.dtype)
- for M in [A, B]:
- rank_tol = 1e-9
- rank_np = np.linalg.matrix_rank(M, norm(M, 2) * rank_tol)
- rank_est = pymatrixid.estimate_rank(M, rank_tol)
- assert_(rank_est >= rank_np)
- assert_(rank_est <= rank_np + 10)
- def test_rank_estimates_lin_op(self, A):
- B = np.array([[1, 1, 0], [0, 0, 1], [0, 0, 1]], dtype=A.dtype)
- for M in [A, B]:
- ML = aslinearoperator(M)
- rank_tol = 1e-9
- rank_np = np.linalg.matrix_rank(M, norm(M, 2) * rank_tol)
- rank_est = pymatrixid.estimate_rank(ML, rank_tol)
- assert_(rank_est >= rank_np - 4)
- assert_(rank_est <= rank_np + 4)
- def test_rand(self):
- pymatrixid.seed('default')
- assert_allclose(pymatrixid.rand(2), [0.8932059, 0.64500803],
- rtol=1e-4, atol=1e-8)
- pymatrixid.seed(1234)
- x1 = pymatrixid.rand(2)
- assert_allclose(x1, [0.7513823, 0.06861718], rtol=1e-4, atol=1e-8)
- np.random.seed(1234)
- pymatrixid.seed()
- x2 = pymatrixid.rand(2)
- np.random.seed(1234)
- pymatrixid.seed(np.random.rand(55))
- x3 = pymatrixid.rand(2)
- assert_allclose(x1, x2)
- assert_allclose(x1, x3)
- def test_badcall(self):
- A = hilbert(5).astype(np.float32)
- with assert_raises(ValueError):
- pymatrixid.interp_decomp(A, 1e-6, rand=False)
- def test_rank_too_large(self):
- # svd(array, k) should not segfault
- a = np.ones((4, 3))
- with assert_raises(ValueError):
- pymatrixid.svd(a, 4)
- def test_full_rank(self):
- eps = 1.0e-12
- # fixed precision
- A = np.random.rand(16, 8)
- k, idx, proj = pymatrixid.interp_decomp(A, eps)
- assert_equal(k, A.shape[1])
- P = pymatrixid.reconstruct_interp_matrix(idx, proj)
- B = pymatrixid.reconstruct_skel_matrix(A, k, idx)
- assert_allclose(A, B @ P)
- # fixed rank
- idx, proj = pymatrixid.interp_decomp(A, k)
- P = pymatrixid.reconstruct_interp_matrix(idx, proj)
- B = pymatrixid.reconstruct_skel_matrix(A, k, idx)
- assert_allclose(A, B @ P)
- @pytest.mark.parametrize("dtype", [np.float_, np.complex_])
- @pytest.mark.parametrize("rand", [True, False])
- @pytest.mark.parametrize("eps", [1, 0.1])
- def test_bug_9793(self, dtype, rand, eps):
- if _IS_32BIT and dtype == np.complex_ and rand:
- pytest.xfail("bug in external fortran code")
- A = np.array([[-1, -1, -1, 0, 0, 0],
- [0, 0, 0, 1, 1, 1],
- [1, 0, 0, 1, 0, 0],
- [0, 1, 0, 0, 1, 0],
- [0, 0, 1, 0, 0, 1]],
- dtype=dtype, order="C")
- B = A.copy()
- interp_decomp(A.T, eps, rand=rand)
- assert_array_equal(A, B)
|