123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179 |
- """ Sketching-based Matrix Computations """
- # Author: Jordi Montes <jomsdev@gmail.com>
- # August 28, 2017
- import numpy as np
- from scipy._lib._util import check_random_state, rng_integers
- from scipy.sparse import csc_matrix
- __all__ = ['clarkson_woodruff_transform']
- def cwt_matrix(n_rows, n_columns, seed=None):
- r"""
- Generate a matrix S which represents a Clarkson-Woodruff transform.
- Given the desired size of matrix, the method returns a matrix S of size
- (n_rows, n_columns) where each column has all the entries set to 0
- except for one position which has been randomly set to +1 or -1 with
- equal probability.
- Parameters
- ----------
- n_rows : int
- Number of rows of S
- n_columns : int
- Number of columns of S
- seed : {None, int, `numpy.random.Generator`, `numpy.random.RandomState`}, optional
- If `seed` is None (or `np.random`), the `numpy.random.RandomState`
- singleton is used.
- If `seed` is an int, a new ``RandomState`` instance is used,
- seeded with `seed`.
- If `seed` is already a ``Generator`` or ``RandomState`` instance then
- that instance is used.
- Returns
- -------
- S : (n_rows, n_columns) csc_matrix
- The returned matrix has ``n_columns`` nonzero entries.
- Notes
- -----
- Given a matrix A, with probability at least 9/10,
- .. math:: \|SA\| = (1 \pm \epsilon)\|A\|
- Where the error epsilon is related to the size of S.
- """
- rng = check_random_state(seed)
- rows = rng_integers(rng, 0, n_rows, n_columns)
- cols = np.arange(n_columns+1)
- signs = rng.choice([1, -1], n_columns)
- S = csc_matrix((signs, rows, cols),shape=(n_rows, n_columns))
- return S
- def clarkson_woodruff_transform(input_matrix, sketch_size, seed=None):
- r"""
- Applies a Clarkson-Woodruff Transform/sketch to the input matrix.
- Given an input_matrix ``A`` of size ``(n, d)``, compute a matrix ``A'`` of
- size (sketch_size, d) so that
- .. math:: \|Ax\| \approx \|A'x\|
- with high probability via the Clarkson-Woodruff Transform, otherwise
- known as the CountSketch matrix.
- Parameters
- ----------
- input_matrix : array_like
- Input matrix, of shape ``(n, d)``.
- sketch_size : int
- Number of rows for the sketch.
- seed : {None, int, `numpy.random.Generator`, `numpy.random.RandomState`}, optional
- If `seed` is None (or `np.random`), the `numpy.random.RandomState`
- singleton is used.
- If `seed` is an int, a new ``RandomState`` instance is used,
- seeded with `seed`.
- If `seed` is already a ``Generator`` or ``RandomState`` instance then
- that instance is used.
- Returns
- -------
- A' : array_like
- Sketch of the input matrix ``A``, of size ``(sketch_size, d)``.
- Notes
- -----
- To make the statement
- .. math:: \|Ax\| \approx \|A'x\|
- precise, observe the following result which is adapted from the
- proof of Theorem 14 of [2]_ via Markov's Inequality. If we have
- a sketch size ``sketch_size=k`` which is at least
- .. math:: k \geq \frac{2}{\epsilon^2\delta}
- Then for any fixed vector ``x``,
- .. math:: \|Ax\| = (1\pm\epsilon)\|A'x\|
- with probability at least one minus delta.
- This implementation takes advantage of sparsity: computing
- a sketch takes time proportional to ``A.nnz``. Data ``A`` which
- is in ``scipy.sparse.csc_matrix`` format gives the quickest
- computation time for sparse input.
- >>> import numpy as np
- >>> from scipy import linalg
- >>> from scipy import sparse
- >>> rng = np.random.default_rng()
- >>> n_rows, n_columns, density, sketch_n_rows = 15000, 100, 0.01, 200
- >>> A = sparse.rand(n_rows, n_columns, density=density, format='csc')
- >>> B = sparse.rand(n_rows, n_columns, density=density, format='csr')
- >>> C = sparse.rand(n_rows, n_columns, density=density, format='coo')
- >>> D = rng.standard_normal((n_rows, n_columns))
- >>> SA = linalg.clarkson_woodruff_transform(A, sketch_n_rows) # fastest
- >>> SB = linalg.clarkson_woodruff_transform(B, sketch_n_rows) # fast
- >>> SC = linalg.clarkson_woodruff_transform(C, sketch_n_rows) # slower
- >>> SD = linalg.clarkson_woodruff_transform(D, sketch_n_rows) # slowest
- That said, this method does perform well on dense inputs, just slower
- on a relative scale.
- References
- ----------
- .. [1] Kenneth L. Clarkson and David P. Woodruff. Low rank approximation
- and regression in input sparsity time. In STOC, 2013.
- .. [2] David P. Woodruff. Sketching as a tool for numerical linear algebra.
- In Foundations and Trends in Theoretical Computer Science, 2014.
- Examples
- --------
- Create a big dense matrix ``A`` for the example:
- >>> import numpy as np
- >>> from scipy import linalg
- >>> n_rows, n_columns = 15000, 100
- >>> rng = np.random.default_rng()
- >>> A = rng.standard_normal((n_rows, n_columns))
- Apply the transform to create a new matrix with 200 rows:
- >>> sketch_n_rows = 200
- >>> sketch = linalg.clarkson_woodruff_transform(A, sketch_n_rows, seed=rng)
- >>> sketch.shape
- (200, 100)
- Now with high probability, the true norm is close to the sketched norm
- in absolute value.
- >>> linalg.norm(A)
- 1224.2812927123198
- >>> linalg.norm(sketch)
- 1226.518328407333
- Similarly, applying our sketch preserves the solution to a linear
- regression of :math:`\min \|Ax - b\|`.
- >>> b = rng.standard_normal(n_rows)
- >>> x = linalg.lstsq(A, b)[0]
- >>> Ab = np.hstack((A, b.reshape(-1, 1)))
- >>> SAb = linalg.clarkson_woodruff_transform(Ab, sketch_n_rows, seed=rng)
- >>> SA, Sb = SAb[:, :-1], SAb[:, -1]
- >>> x_sketched = linalg.lstsq(SA, Sb)[0]
- As with the matrix norm example, ``linalg.norm(A @ x - b)`` is close
- to ``linalg.norm(A @ x_sketched - b)`` with high probability.
- >>> linalg.norm(A @ x - b)
- 122.83242365433877
- >>> linalg.norm(A @ x_sketched - b)
- 166.58473879945151
- """
- S = cwt_matrix(sketch_size, input_matrix.shape[0], seed)
- return S.dot(input_matrix)
|