123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111 |
- import numpy as np
- from scipy.linalg import svd
- __all__ = ['polar']
- def polar(a, side="right"):
- """
- Compute the polar decomposition.
- Returns the factors of the polar decomposition [1]_ `u` and `p` such
- that ``a = up`` (if `side` is "right") or ``a = pu`` (if `side` is
- "left"), where `p` is positive semidefinite. Depending on the shape
- of `a`, either the rows or columns of `u` are orthonormal. When `a`
- is a square array, `u` is a square unitary array. When `a` is not
- square, the "canonical polar decomposition" [2]_ is computed.
- Parameters
- ----------
- a : (m, n) array_like
- The array to be factored.
- side : {'left', 'right'}, optional
- Determines whether a right or left polar decomposition is computed.
- If `side` is "right", then ``a = up``. If `side` is "left", then
- ``a = pu``. The default is "right".
- Returns
- -------
- u : (m, n) ndarray
- If `a` is square, then `u` is unitary. If m > n, then the columns
- of `a` are orthonormal, and if m < n, then the rows of `u` are
- orthonormal.
- p : ndarray
- `p` is Hermitian positive semidefinite. If `a` is nonsingular, `p`
- is positive definite. The shape of `p` is (n, n) or (m, m), depending
- on whether `side` is "right" or "left", respectively.
- References
- ----------
- .. [1] R. A. Horn and C. R. Johnson, "Matrix Analysis", Cambridge
- University Press, 1985.
- .. [2] N. J. Higham, "Functions of Matrices: Theory and Computation",
- SIAM, 2008.
- Examples
- --------
- >>> import numpy as np
- >>> from scipy.linalg import polar
- >>> a = np.array([[1, -1], [2, 4]])
- >>> u, p = polar(a)
- >>> u
- array([[ 0.85749293, -0.51449576],
- [ 0.51449576, 0.85749293]])
- >>> p
- array([[ 1.88648444, 1.2004901 ],
- [ 1.2004901 , 3.94446746]])
- A non-square example, with m < n:
- >>> b = np.array([[0.5, 1, 2], [1.5, 3, 4]])
- >>> u, p = polar(b)
- >>> u
- array([[-0.21196618, -0.42393237, 0.88054056],
- [ 0.39378971, 0.78757942, 0.4739708 ]])
- >>> p
- array([[ 0.48470147, 0.96940295, 1.15122648],
- [ 0.96940295, 1.9388059 , 2.30245295],
- [ 1.15122648, 2.30245295, 3.65696431]])
- >>> u.dot(p) # Verify the decomposition.
- array([[ 0.5, 1. , 2. ],
- [ 1.5, 3. , 4. ]])
- >>> u.dot(u.T) # The rows of u are orthonormal.
- array([[ 1.00000000e+00, -2.07353665e-17],
- [ -2.07353665e-17, 1.00000000e+00]])
- Another non-square example, with m > n:
- >>> c = b.T
- >>> u, p = polar(c)
- >>> u
- array([[-0.21196618, 0.39378971],
- [-0.42393237, 0.78757942],
- [ 0.88054056, 0.4739708 ]])
- >>> p
- array([[ 1.23116567, 1.93241587],
- [ 1.93241587, 4.84930602]])
- >>> u.dot(p) # Verify the decomposition.
- array([[ 0.5, 1.5],
- [ 1. , 3. ],
- [ 2. , 4. ]])
- >>> u.T.dot(u) # The columns of u are orthonormal.
- array([[ 1.00000000e+00, -1.26363763e-16],
- [ -1.26363763e-16, 1.00000000e+00]])
- """
- if side not in ['right', 'left']:
- raise ValueError("`side` must be either 'right' or 'left'")
- a = np.asarray(a)
- if a.ndim != 2:
- raise ValueError("`a` must be a 2-D array.")
- w, s, vh = svd(a, full_matrices=False)
- u = w.dot(vh)
- if side == 'right':
- # a = up
- p = (vh.T.conj() * s).dot(vh)
- else:
- # a = pu
- p = (w * s).dot(w.T.conj())
- return u, p
|