123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224 |
- # -*- coding: utf-8 -*-
- from collections.abc import Iterable
- import numpy as np
- from scipy._lib._util import _asarray_validated
- from scipy.linalg import block_diag, LinAlgError
- from .lapack import _compute_lwork, get_lapack_funcs
- __all__ = ['cossin']
- def cossin(X, p=None, q=None, separate=False,
- swap_sign=False, compute_u=True, compute_vh=True):
- """
- Compute the cosine-sine (CS) decomposition of an orthogonal/unitary matrix.
- X is an ``(m, m)`` orthogonal/unitary matrix, partitioned as the following
- where upper left block has the shape of ``(p, q)``::
- ┌ ┐
- │ I 0 0 │ 0 0 0 │
- ┌ ┐ ┌ ┐│ 0 C 0 │ 0 -S 0 │┌ ┐*
- │ X11 │ X12 │ │ U1 │ ││ 0 0 0 │ 0 0 -I ││ V1 │ │
- │ ────┼──── │ = │────┼────││─────────┼─────────││────┼────│
- │ X21 │ X22 │ │ │ U2 ││ 0 0 0 │ I 0 0 ││ │ V2 │
- └ ┘ └ ┘│ 0 S 0 │ 0 C 0 │└ ┘
- │ 0 0 I │ 0 0 0 │
- └ ┘
- ``U1``, ``U2``, ``V1``, ``V2`` are square orthogonal/unitary matrices of
- dimensions ``(p,p)``, ``(m-p,m-p)``, ``(q,q)``, and ``(m-q,m-q)``
- respectively, and ``C`` and ``S`` are ``(r, r)`` nonnegative diagonal
- matrices satisfying ``C^2 + S^2 = I`` where ``r = min(p, m-p, q, m-q)``.
- Moreover, the rank of the identity matrices are ``min(p, q) - r``,
- ``min(p, m - q) - r``, ``min(m - p, q) - r``, and ``min(m - p, m - q) - r``
- respectively.
- X can be supplied either by itself and block specifications p, q or its
- subblocks in an iterable from which the shapes would be derived. See the
- examples below.
- Parameters
- ----------
- X : array_like, iterable
- complex unitary or real orthogonal matrix to be decomposed, or iterable
- of subblocks ``X11``, ``X12``, ``X21``, ``X22``, when ``p``, ``q`` are
- omitted.
- p : int, optional
- Number of rows of the upper left block ``X11``, used only when X is
- given as an array.
- q : int, optional
- Number of columns of the upper left block ``X11``, used only when X is
- given as an array.
- separate : bool, optional
- if ``True``, the low level components are returned instead of the
- matrix factors, i.e. ``(u1,u2)``, ``theta``, ``(v1h,v2h)`` instead of
- ``u``, ``cs``, ``vh``.
- swap_sign : bool, optional
- if ``True``, the ``-S``, ``-I`` block will be the bottom left,
- otherwise (by default) they will be in the upper right block.
- compute_u : bool, optional
- if ``False``, ``u`` won't be computed and an empty array is returned.
- compute_vh : bool, optional
- if ``False``, ``vh`` won't be computed and an empty array is returned.
- Returns
- -------
- u : ndarray
- When ``compute_u=True``, contains the block diagonal orthogonal/unitary
- matrix consisting of the blocks ``U1`` (``p`` x ``p``) and ``U2``
- (``m-p`` x ``m-p``) orthogonal/unitary matrices. If ``separate=True``,
- this contains the tuple of ``(U1, U2)``.
- cs : ndarray
- The cosine-sine factor with the structure described above.
- If ``separate=True``, this contains the ``theta`` array containing the
- angles in radians.
- vh : ndarray
- When ``compute_vh=True`, contains the block diagonal orthogonal/unitary
- matrix consisting of the blocks ``V1H`` (``q`` x ``q``) and ``V2H``
- (``m-q`` x ``m-q``) orthogonal/unitary matrices. If ``separate=True``,
- this contains the tuple of ``(V1H, V2H)``.
- References
- ----------
- .. [1] Brian D. Sutton. Computing the complete CS decomposition. Numer.
- Algorithms, 50(1):33-65, 2009.
- Examples
- --------
- >>> import numpy as np
- >>> from scipy.linalg import cossin
- >>> from scipy.stats import unitary_group
- >>> x = unitary_group.rvs(4)
- >>> u, cs, vdh = cossin(x, p=2, q=2)
- >>> np.allclose(x, u @ cs @ vdh)
- True
- Same can be entered via subblocks without the need of ``p`` and ``q``. Also
- let's skip the computation of ``u``
- >>> ue, cs, vdh = cossin((x[:2, :2], x[:2, 2:], x[2:, :2], x[2:, 2:]),
- ... compute_u=False)
- >>> print(ue)
- []
- >>> np.allclose(x, u @ cs @ vdh)
- True
- """
- if p or q:
- p = 1 if p is None else int(p)
- q = 1 if q is None else int(q)
- X = _asarray_validated(X, check_finite=True)
- if not np.equal(*X.shape):
- raise ValueError("Cosine Sine decomposition only supports square"
- " matrices, got {}".format(X.shape))
- m = X.shape[0]
- if p >= m or p <= 0:
- raise ValueError("invalid p={}, 0<p<{} must hold"
- .format(p, X.shape[0]))
- if q >= m or q <= 0:
- raise ValueError("invalid q={}, 0<q<{} must hold"
- .format(q, X.shape[0]))
- x11, x12, x21, x22 = X[:p, :q], X[:p, q:], X[p:, :q], X[p:, q:]
- elif not isinstance(X, Iterable):
- raise ValueError("When p and q are None, X must be an Iterable"
- " containing the subblocks of X")
- else:
- if len(X) != 4:
- raise ValueError("When p and q are None, exactly four arrays"
- " should be in X, got {}".format(len(X)))
- x11, x12, x21, x22 = [np.atleast_2d(x) for x in X]
- for name, block in zip(["x11", "x12", "x21", "x22"],
- [x11, x12, x21, x22]):
- if block.shape[1] == 0:
- raise ValueError("{} can't be empty".format(name))
- p, q = x11.shape
- mmp, mmq = x22.shape
- if x12.shape != (p, mmq):
- raise ValueError("Invalid x12 dimensions: desired {}, "
- "got {}".format((p, mmq), x12.shape))
- if x21.shape != (mmp, q):
- raise ValueError("Invalid x21 dimensions: desired {}, "
- "got {}".format((mmp, q), x21.shape))
- if p + mmp != q + mmq:
- raise ValueError("The subblocks have compatible sizes but "
- "don't form a square array (instead they form a"
- " {}x{} array). This might be due to missing "
- "p, q arguments.".format(p + mmp, q + mmq))
- m = p + mmp
- cplx = any([np.iscomplexobj(x) for x in [x11, x12, x21, x22]])
- driver = "uncsd" if cplx else "orcsd"
- csd, csd_lwork = get_lapack_funcs([driver, driver + "_lwork"],
- [x11, x12, x21, x22])
- lwork = _compute_lwork(csd_lwork, m=m, p=p, q=q)
- lwork_args = ({'lwork': lwork[0], 'lrwork': lwork[1]} if cplx else
- {'lwork': lwork})
- *_, theta, u1, u2, v1h, v2h, info = csd(x11=x11, x12=x12, x21=x21, x22=x22,
- compute_u1=compute_u,
- compute_u2=compute_u,
- compute_v1t=compute_vh,
- compute_v2t=compute_vh,
- trans=False, signs=swap_sign,
- **lwork_args)
- method_name = csd.typecode + driver
- if info < 0:
- raise ValueError('illegal value in argument {} of internal {}'
- .format(-info, method_name))
- if info > 0:
- raise LinAlgError("{} did not converge: {}".format(method_name, info))
- if separate:
- return (u1, u2), theta, (v1h, v2h)
- U = block_diag(u1, u2)
- VDH = block_diag(v1h, v2h)
- # Construct the middle factor CS
- c = np.diag(np.cos(theta))
- s = np.diag(np.sin(theta))
- r = min(p, q, m - p, m - q)
- n11 = min(p, q) - r
- n12 = min(p, m - q) - r
- n21 = min(m - p, q) - r
- n22 = min(m - p, m - q) - r
- Id = np.eye(np.max([n11, n12, n21, n22, r]), dtype=theta.dtype)
- CS = np.zeros((m, m), dtype=theta.dtype)
- CS[:n11, :n11] = Id[:n11, :n11]
- xs = n11 + r
- xe = n11 + r + n12
- ys = n11 + n21 + n22 + 2 * r
- ye = n11 + n21 + n22 + 2 * r + n12
- CS[xs: xe, ys:ye] = Id[:n12, :n12] if swap_sign else -Id[:n12, :n12]
- xs = p + n22 + r
- xe = p + n22 + r + + n21
- ys = n11 + r
- ye = n11 + r + n21
- CS[xs:xe, ys:ye] = -Id[:n21, :n21] if swap_sign else Id[:n21, :n21]
- CS[p:p + n22, q:q + n22] = Id[:n22, :n22]
- CS[n11:n11 + r, n11:n11 + r] = c
- CS[p + n22:p + n22 + r, r + n21 + n22:2 * r + n21 + n22] = c
- xs = n11
- xe = n11 + r
- ys = n11 + n21 + n22 + r
- ye = n11 + n21 + n22 + 2 * r
- CS[xs:xe, ys:ye] = s if swap_sign else -s
- CS[p + n22:p + n22 + r, n11:n11 + r] = -s if swap_sign else s
- return U, CS, VDH
|