123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246 |
- import numpy as np
- from numpy.testing import assert_equal, assert_array_equal, assert_allclose
- import pytest
- from pytest import raises as assert_raises
- from scipy.interpolate import (griddata, NearestNDInterpolator,
- LinearNDInterpolator,
- CloughTocher2DInterpolator)
- parametrize_interpolators = pytest.mark.parametrize(
- "interpolator", [NearestNDInterpolator, LinearNDInterpolator,
- CloughTocher2DInterpolator]
- )
- class TestGriddata:
- def test_fill_value(self):
- x = [(0,0), (0,1), (1,0)]
- y = [1, 2, 3]
- yi = griddata(x, y, [(1,1), (1,2), (0,0)], fill_value=-1)
- assert_array_equal(yi, [-1., -1, 1])
- yi = griddata(x, y, [(1,1), (1,2), (0,0)])
- assert_array_equal(yi, [np.nan, np.nan, 1])
- def test_alternative_call(self):
- x = np.array([(0,0), (-0.5,-0.5), (-0.5,0.5), (0.5, 0.5), (0.25, 0.3)],
- dtype=np.double)
- y = (np.arange(x.shape[0], dtype=np.double)[:,None]
- + np.array([0,1])[None,:])
- for method in ('nearest', 'linear', 'cubic'):
- for rescale in (True, False):
- msg = repr((method, rescale))
- yi = griddata((x[:,0], x[:,1]), y, (x[:,0], x[:,1]), method=method,
- rescale=rescale)
- assert_allclose(y, yi, atol=1e-14, err_msg=msg)
- def test_multivalue_2d(self):
- x = np.array([(0,0), (-0.5,-0.5), (-0.5,0.5), (0.5, 0.5), (0.25, 0.3)],
- dtype=np.double)
- y = (np.arange(x.shape[0], dtype=np.double)[:,None]
- + np.array([0,1])[None,:])
- for method in ('nearest', 'linear', 'cubic'):
- for rescale in (True, False):
- msg = repr((method, rescale))
- yi = griddata(x, y, x, method=method, rescale=rescale)
- assert_allclose(y, yi, atol=1e-14, err_msg=msg)
- def test_multipoint_2d(self):
- x = np.array([(0,0), (-0.5,-0.5), (-0.5,0.5), (0.5, 0.5), (0.25, 0.3)],
- dtype=np.double)
- y = np.arange(x.shape[0], dtype=np.double)
- xi = x[:,None,:] + np.array([0,0,0])[None,:,None]
- for method in ('nearest', 'linear', 'cubic'):
- for rescale in (True, False):
- msg = repr((method, rescale))
- yi = griddata(x, y, xi, method=method, rescale=rescale)
- assert_equal(yi.shape, (5, 3), err_msg=msg)
- assert_allclose(yi, np.tile(y[:,None], (1, 3)),
- atol=1e-14, err_msg=msg)
- def test_complex_2d(self):
- x = np.array([(0,0), (-0.5,-0.5), (-0.5,0.5), (0.5, 0.5), (0.25, 0.3)],
- dtype=np.double)
- y = np.arange(x.shape[0], dtype=np.double)
- y = y - 2j*y[::-1]
- xi = x[:,None,:] + np.array([0,0,0])[None,:,None]
- for method in ('nearest', 'linear', 'cubic'):
- for rescale in (True, False):
- msg = repr((method, rescale))
- yi = griddata(x, y, xi, method=method, rescale=rescale)
- assert_equal(yi.shape, (5, 3), err_msg=msg)
- assert_allclose(yi, np.tile(y[:,None], (1, 3)),
- atol=1e-14, err_msg=msg)
- def test_1d(self):
- x = np.array([1, 2.5, 3, 4.5, 5, 6])
- y = np.array([1, 2, 0, 3.9, 2, 1])
- for method in ('nearest', 'linear', 'cubic'):
- assert_allclose(griddata(x, y, x, method=method), y,
- err_msg=method, atol=1e-14)
- assert_allclose(griddata(x.reshape(6, 1), y, x, method=method), y,
- err_msg=method, atol=1e-14)
- assert_allclose(griddata((x,), y, (x,), method=method), y,
- err_msg=method, atol=1e-14)
- def test_1d_borders(self):
- # Test for nearest neighbor case with xi outside
- # the range of the values.
- x = np.array([1, 2.5, 3, 4.5, 5, 6])
- y = np.array([1, 2, 0, 3.9, 2, 1])
- xi = np.array([0.9, 6.5])
- yi_should = np.array([1.0, 1.0])
- method = 'nearest'
- assert_allclose(griddata(x, y, xi,
- method=method), yi_should,
- err_msg=method,
- atol=1e-14)
- assert_allclose(griddata(x.reshape(6, 1), y, xi,
- method=method), yi_should,
- err_msg=method,
- atol=1e-14)
- assert_allclose(griddata((x, ), y, (xi, ),
- method=method), yi_should,
- err_msg=method,
- atol=1e-14)
- def test_1d_unsorted(self):
- x = np.array([2.5, 1, 4.5, 5, 6, 3])
- y = np.array([1, 2, 0, 3.9, 2, 1])
- for method in ('nearest', 'linear', 'cubic'):
- assert_allclose(griddata(x, y, x, method=method), y,
- err_msg=method, atol=1e-10)
- assert_allclose(griddata(x.reshape(6, 1), y, x, method=method), y,
- err_msg=method, atol=1e-10)
- assert_allclose(griddata((x,), y, (x,), method=method), y,
- err_msg=method, atol=1e-10)
- def test_square_rescale_manual(self):
- points = np.array([(0,0), (0,100), (10,100), (10,0), (1, 5)], dtype=np.double)
- points_rescaled = np.array([(0,0), (0,1), (1,1), (1,0), (0.1, 0.05)], dtype=np.double)
- values = np.array([1., 2., -3., 5., 9.], dtype=np.double)
- xx, yy = np.broadcast_arrays(np.linspace(0, 10, 14)[:,None],
- np.linspace(0, 100, 14)[None,:])
- xx = xx.ravel()
- yy = yy.ravel()
- xi = np.array([xx, yy]).T.copy()
- for method in ('nearest', 'linear', 'cubic'):
- msg = method
- zi = griddata(points_rescaled, values, xi/np.array([10, 100.]),
- method=method)
- zi_rescaled = griddata(points, values, xi, method=method,
- rescale=True)
- assert_allclose(zi, zi_rescaled, err_msg=msg,
- atol=1e-12)
- def test_xi_1d(self):
- # Check that 1-D xi is interpreted as a coordinate
- x = np.array([(0,0), (-0.5,-0.5), (-0.5,0.5), (0.5, 0.5), (0.25, 0.3)],
- dtype=np.double)
- y = np.arange(x.shape[0], dtype=np.double)
- y = y - 2j*y[::-1]
- xi = np.array([0.5, 0.5])
- for method in ('nearest', 'linear', 'cubic'):
- p1 = griddata(x, y, xi, method=method)
- p2 = griddata(x, y, xi[None,:], method=method)
- assert_allclose(p1, p2, err_msg=method)
- xi1 = np.array([0.5])
- xi3 = np.array([0.5, 0.5, 0.5])
- assert_raises(ValueError, griddata, x, y, xi1,
- method=method)
- assert_raises(ValueError, griddata, x, y, xi3,
- method=method)
- class TestNearestNDInterpolator:
- def test_nearest_options(self):
- # smoke test that NearestNDInterpolator accept cKDTree options
- npts, nd = 4, 3
- x = np.arange(npts*nd).reshape((npts, nd))
- y = np.arange(npts)
- nndi = NearestNDInterpolator(x, y)
- opts = {'balanced_tree': False, 'compact_nodes': False}
- nndi_o = NearestNDInterpolator(x, y, tree_options=opts)
- assert_allclose(nndi(x), nndi_o(x), atol=1e-14)
- def test_nearest_list_argument(self):
- nd = np.array([[0, 0, 0, 0, 1, 0, 1],
- [0, 0, 0, 0, 0, 1, 1],
- [0, 0, 0, 0, 1, 1, 2]])
- d = nd[:, 3:]
- # z is np.array
- NI = NearestNDInterpolator((d[0], d[1]), d[2])
- assert_array_equal(NI([0.1, 0.9], [0.1, 0.9]), [0, 2])
- # z is list
- NI = NearestNDInterpolator((d[0], d[1]), list(d[2]))
- assert_array_equal(NI([0.1, 0.9], [0.1, 0.9]), [0, 2])
- class TestNDInterpolators:
- @parametrize_interpolators
- def test_broadcastable_input(self, interpolator):
- # input data
- np.random.seed(0)
- x = np.random.random(10)
- y = np.random.random(10)
- z = np.hypot(x, y)
- # x-y grid for interpolation
- X = np.linspace(min(x), max(x))
- Y = np.linspace(min(y), max(y))
- X, Y = np.meshgrid(X, Y)
- XY = np.vstack((X.ravel(), Y.ravel())).T
- interp = interpolator(list(zip(x, y)), z)
- # single array input
- interp_points0 = interp(XY)
- # tuple input
- interp_points1 = interp((X, Y))
- interp_points2 = interp((X, 0.0))
- # broadcastable input
- interp_points3 = interp(X, Y)
- interp_points4 = interp(X, 0.0)
- assert_equal(interp_points0.size ==
- interp_points1.size ==
- interp_points2.size ==
- interp_points3.size ==
- interp_points4.size, True)
- @parametrize_interpolators
- def test_read_only(self, interpolator):
- # input data
- np.random.seed(0)
- xy = np.random.random((10, 2))
- x, y = xy[:, 0], xy[:, 1]
- z = np.hypot(x, y)
- # interpolation points
- XY = np.random.random((50, 2))
- xy.setflags(write=False)
- z.setflags(write=False)
- XY.setflags(write=False)
- interp = interpolator(xy, z)
- interp(XY)
|