123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386 |
- import os
- import numpy as np
- from numpy.testing import (assert_equal, assert_allclose, assert_almost_equal,
- suppress_warnings)
- from pytest import raises as assert_raises
- import pytest
- import scipy.interpolate.interpnd as interpnd
- import scipy.spatial._qhull as qhull
- import pickle
- def data_file(basename):
- return os.path.join(os.path.abspath(os.path.dirname(__file__)),
- 'data', basename)
- class TestLinearNDInterpolation:
- def test_smoketest(self):
- # Test at single points
- x = np.array([(0,0), (-0.5,-0.5), (-0.5,0.5), (0.5, 0.5), (0.25, 0.3)],
- dtype=np.double)
- y = np.arange(x.shape[0], dtype=np.double)
- yi = interpnd.LinearNDInterpolator(x, y)(x)
- assert_almost_equal(y, yi)
- def test_smoketest_alternate(self):
- # Test at single points, alternate calling convention
- x = np.array([(0,0), (-0.5,-0.5), (-0.5,0.5), (0.5, 0.5), (0.25, 0.3)],
- dtype=np.double)
- y = np.arange(x.shape[0], dtype=np.double)
- yi = interpnd.LinearNDInterpolator((x[:,0], x[:,1]), y)(x[:,0], x[:,1])
- assert_almost_equal(y, yi)
- def test_complex_smoketest(self):
- # Test at single points
- x = np.array([(0,0), (-0.5,-0.5), (-0.5,0.5), (0.5, 0.5), (0.25, 0.3)],
- dtype=np.double)
- y = np.arange(x.shape[0], dtype=np.double)
- y = y - 3j*y
- yi = interpnd.LinearNDInterpolator(x, y)(x)
- assert_almost_equal(y, yi)
- def test_tri_input(self):
- # Test at single points
- x = np.array([(0,0), (-0.5,-0.5), (-0.5,0.5), (0.5, 0.5), (0.25, 0.3)],
- dtype=np.double)
- y = np.arange(x.shape[0], dtype=np.double)
- y = y - 3j*y
- tri = qhull.Delaunay(x)
- yi = interpnd.LinearNDInterpolator(tri, y)(x)
- assert_almost_equal(y, yi)
- def test_square(self):
- # Test barycentric interpolation on a square against a manual
- # implementation
- points = np.array([(0,0), (0,1), (1,1), (1,0)], dtype=np.double)
- values = np.array([1., 2., -3., 5.], dtype=np.double)
- # NB: assume triangles (0, 1, 3) and (1, 2, 3)
- #
- # 1----2
- # | \ |
- # | \ |
- # 0----3
- def ip(x, y):
- t1 = (x + y <= 1)
- t2 = ~t1
- x1 = x[t1]
- y1 = y[t1]
- x2 = x[t2]
- y2 = y[t2]
- z = 0*x
- z[t1] = (values[0]*(1 - x1 - y1)
- + values[1]*y1
- + values[3]*x1)
- z[t2] = (values[2]*(x2 + y2 - 1)
- + values[1]*(1 - x2)
- + values[3]*(1 - y2))
- return z
- xx, yy = np.broadcast_arrays(np.linspace(0, 1, 14)[:,None],
- np.linspace(0, 1, 14)[None,:])
- xx = xx.ravel()
- yy = yy.ravel()
- xi = np.array([xx, yy]).T.copy()
- zi = interpnd.LinearNDInterpolator(points, values)(xi)
- assert_almost_equal(zi, ip(xx, yy))
- def test_smoketest_rescale(self):
- # Test at single points
- x = np.array([(0, 0), (-5, -5), (-5, 5), (5, 5), (2.5, 3)],
- dtype=np.double)
- y = np.arange(x.shape[0], dtype=np.double)
- yi = interpnd.LinearNDInterpolator(x, y, rescale=True)(x)
- assert_almost_equal(y, yi)
- def test_square_rescale(self):
- # Test barycentric interpolation on a rectangle with rescaling
- # agaings the same implementation without rescaling
- points = np.array([(0,0), (0,100), (10,100), (10,0)], dtype=np.double)
- values = np.array([1., 2., -3., 5.], dtype=np.double)
- xx, yy = np.broadcast_arrays(np.linspace(0, 10, 14)[:,None],
- np.linspace(0, 100, 14)[None,:])
- xx = xx.ravel()
- yy = yy.ravel()
- xi = np.array([xx, yy]).T.copy()
- zi = interpnd.LinearNDInterpolator(points, values)(xi)
- zi_rescaled = interpnd.LinearNDInterpolator(points, values,
- rescale=True)(xi)
- assert_almost_equal(zi, zi_rescaled)
- def test_tripoints_input_rescale(self):
- # Test at single points
- x = np.array([(0,0), (-5,-5), (-5,5), (5, 5), (2.5, 3)],
- dtype=np.double)
- y = np.arange(x.shape[0], dtype=np.double)
- y = y - 3j*y
- tri = qhull.Delaunay(x)
- yi = interpnd.LinearNDInterpolator(tri.points, y)(x)
- yi_rescale = interpnd.LinearNDInterpolator(tri.points, y,
- rescale=True)(x)
- assert_almost_equal(yi, yi_rescale)
- def test_tri_input_rescale(self):
- # Test at single points
- x = np.array([(0,0), (-5,-5), (-5,5), (5, 5), (2.5, 3)],
- dtype=np.double)
- y = np.arange(x.shape[0], dtype=np.double)
- y = y - 3j*y
- tri = qhull.Delaunay(x)
- match = ("Rescaling is not supported when passing a "
- "Delaunay triangulation as ``points``.")
- with pytest.raises(ValueError, match=match):
- interpnd.LinearNDInterpolator(tri, y, rescale=True)(x)
- def test_pickle(self):
- # Test at single points
- np.random.seed(1234)
- x = np.random.rand(30, 2)
- y = np.random.rand(30) + 1j*np.random.rand(30)
- ip = interpnd.LinearNDInterpolator(x, y)
- ip2 = pickle.loads(pickle.dumps(ip))
- assert_almost_equal(ip(0.5, 0.5), ip2(0.5, 0.5))
- class TestEstimateGradients2DGlobal:
- def test_smoketest(self):
- x = np.array([(0, 0), (0, 2),
- (1, 0), (1, 2), (0.25, 0.75), (0.6, 0.8)], dtype=float)
- tri = qhull.Delaunay(x)
- # Should be exact for linear functions, independent of triangulation
- funcs = [
- (lambda x, y: 0*x + 1, (0, 0)),
- (lambda x, y: 0 + x, (1, 0)),
- (lambda x, y: -2 + y, (0, 1)),
- (lambda x, y: 3 + 3*x + 14.15*y, (3, 14.15))
- ]
- for j, (func, grad) in enumerate(funcs):
- z = func(x[:,0], x[:,1])
- dz = interpnd.estimate_gradients_2d_global(tri, z, tol=1e-6)
- assert_equal(dz.shape, (6, 2))
- assert_allclose(dz, np.array(grad)[None,:] + 0*dz,
- rtol=1e-5, atol=1e-5, err_msg="item %d" % j)
- def test_regression_2359(self):
- # Check regression --- for certain point sets, gradient
- # estimation could end up in an infinite loop
- points = np.load(data_file('estimate_gradients_hang.npy'))
- values = np.random.rand(points.shape[0])
- tri = qhull.Delaunay(points)
- # This should not hang
- with suppress_warnings() as sup:
- sup.filter(interpnd.GradientEstimationWarning,
- "Gradient estimation did not converge")
- interpnd.estimate_gradients_2d_global(tri, values, maxiter=1)
- class TestCloughTocher2DInterpolator:
- def _check_accuracy(self, func, x=None, tol=1e-6, alternate=False, rescale=False, **kw):
- np.random.seed(1234)
- if x is None:
- x = np.array([(0, 0), (0, 1),
- (1, 0), (1, 1), (0.25, 0.75), (0.6, 0.8),
- (0.5, 0.2)],
- dtype=float)
- if not alternate:
- ip = interpnd.CloughTocher2DInterpolator(x, func(x[:,0], x[:,1]),
- tol=1e-6, rescale=rescale)
- else:
- ip = interpnd.CloughTocher2DInterpolator((x[:,0], x[:,1]),
- func(x[:,0], x[:,1]),
- tol=1e-6, rescale=rescale)
- p = np.random.rand(50, 2)
- if not alternate:
- a = ip(p)
- else:
- a = ip(p[:,0], p[:,1])
- b = func(p[:,0], p[:,1])
- try:
- assert_allclose(a, b, **kw)
- except AssertionError:
- print("_check_accuracy: abs(a-b):", abs(a - b))
- print("ip.grad:", ip.grad)
- raise
- def test_linear_smoketest(self):
- # Should be exact for linear functions, independent of triangulation
- funcs = [
- lambda x, y: 0*x + 1,
- lambda x, y: 0 + x,
- lambda x, y: -2 + y,
- lambda x, y: 3 + 3*x + 14.15*y,
- ]
- for j, func in enumerate(funcs):
- self._check_accuracy(func, tol=1e-13, atol=1e-7, rtol=1e-7,
- err_msg="Function %d" % j)
- self._check_accuracy(func, tol=1e-13, atol=1e-7, rtol=1e-7,
- alternate=True,
- err_msg="Function (alternate) %d" % j)
- # check rescaling
- self._check_accuracy(func, tol=1e-13, atol=1e-7, rtol=1e-7,
- err_msg="Function (rescaled) %d" % j, rescale=True)
- self._check_accuracy(func, tol=1e-13, atol=1e-7, rtol=1e-7,
- alternate=True, rescale=True,
- err_msg="Function (alternate, rescaled) %d" % j)
- def test_quadratic_smoketest(self):
- # Should be reasonably accurate for quadratic functions
- funcs = [
- lambda x, y: x**2,
- lambda x, y: y**2,
- lambda x, y: x**2 - y**2,
- lambda x, y: x*y,
- ]
- for j, func in enumerate(funcs):
- self._check_accuracy(func, tol=1e-9, atol=0.22, rtol=0,
- err_msg="Function %d" % j)
- self._check_accuracy(func, tol=1e-9, atol=0.22, rtol=0,
- err_msg="Function %d" % j, rescale=True)
- def test_tri_input(self):
- # Test at single points
- x = np.array([(0,0), (-0.5,-0.5), (-0.5,0.5), (0.5, 0.5), (0.25, 0.3)],
- dtype=np.double)
- y = np.arange(x.shape[0], dtype=np.double)
- y = y - 3j*y
- tri = qhull.Delaunay(x)
- yi = interpnd.CloughTocher2DInterpolator(tri, y)(x)
- assert_almost_equal(y, yi)
- def test_tri_input_rescale(self):
- # Test at single points
- x = np.array([(0,0), (-5,-5), (-5,5), (5, 5), (2.5, 3)],
- dtype=np.double)
- y = np.arange(x.shape[0], dtype=np.double)
- y = y - 3j*y
- tri = qhull.Delaunay(x)
- match = ("Rescaling is not supported when passing a "
- "Delaunay triangulation as ``points``.")
- with pytest.raises(ValueError, match=match):
- interpnd.CloughTocher2DInterpolator(tri, y, rescale=True)(x)
- def test_tripoints_input_rescale(self):
- # Test at single points
- x = np.array([(0,0), (-5,-5), (-5,5), (5, 5), (2.5, 3)],
- dtype=np.double)
- y = np.arange(x.shape[0], dtype=np.double)
- y = y - 3j*y
- tri = qhull.Delaunay(x)
- yi = interpnd.CloughTocher2DInterpolator(tri.points, y)(x)
- yi_rescale = interpnd.CloughTocher2DInterpolator(tri.points, y, rescale=True)(x)
- assert_almost_equal(yi, yi_rescale)
- def test_dense(self):
- # Should be more accurate for dense meshes
- funcs = [
- lambda x, y: x**2,
- lambda x, y: y**2,
- lambda x, y: x**2 - y**2,
- lambda x, y: x*y,
- lambda x, y: np.cos(2*np.pi*x)*np.sin(2*np.pi*y)
- ]
- np.random.seed(4321) # use a different seed than the check!
- grid = np.r_[np.array([(0,0), (0,1), (1,0), (1,1)], dtype=float),
- np.random.rand(30*30, 2)]
- for j, func in enumerate(funcs):
- self._check_accuracy(func, x=grid, tol=1e-9, atol=5e-3, rtol=1e-2,
- err_msg="Function %d" % j)
- self._check_accuracy(func, x=grid, tol=1e-9, atol=5e-3, rtol=1e-2,
- err_msg="Function %d" % j, rescale=True)
- def test_wrong_ndim(self):
- x = np.random.randn(30, 3)
- y = np.random.randn(30)
- assert_raises(ValueError, interpnd.CloughTocher2DInterpolator, x, y)
- def test_pickle(self):
- # Test at single points
- np.random.seed(1234)
- x = np.random.rand(30, 2)
- y = np.random.rand(30) + 1j*np.random.rand(30)
- ip = interpnd.CloughTocher2DInterpolator(x, y)
- ip2 = pickle.loads(pickle.dumps(ip))
- assert_almost_equal(ip(0.5, 0.5), ip2(0.5, 0.5))
- def test_boundary_tri_symmetry(self):
- # Interpolation at neighbourless triangles should retain
- # symmetry with mirroring the triangle.
- # Equilateral triangle
- points = np.array([(0, 0), (1, 0), (0.5, np.sqrt(3)/2)])
- values = np.array([1, 0, 0])
- ip = interpnd.CloughTocher2DInterpolator(points, values)
- # Set gradient to zero at vertices
- ip.grad[...] = 0
- # Interpolation should be symmetric vs. bisector
- alpha = 0.3
- p1 = np.array([0.5 * np.cos(alpha), 0.5 * np.sin(alpha)])
- p2 = np.array([0.5 * np.cos(np.pi/3 - alpha), 0.5 * np.sin(np.pi/3 - alpha)])
- v1 = ip(p1)
- v2 = ip(p2)
- assert_allclose(v1, v2)
- # ... and affine invariant
- np.random.seed(1)
- A = np.random.randn(2, 2)
- b = np.random.randn(2)
- points = A.dot(points.T).T + b[None,:]
- p1 = A.dot(p1) + b
- p2 = A.dot(p2) + b
- ip = interpnd.CloughTocher2DInterpolator(points, values)
- ip.grad[...] = 0
- w1 = ip(p1)
- w2 = ip(p2)
- assert_allclose(w1, v1)
- assert_allclose(w2, v2)
|