123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347 |
- # Created by Pearu Peterson, June 2003
- import itertools
- import numpy as np
- from numpy.testing import (assert_equal, assert_almost_equal, assert_array_equal,
- assert_array_almost_equal, assert_allclose, suppress_warnings)
- from pytest import raises as assert_raises
- from numpy import array, diff, linspace, meshgrid, ones, pi, shape
- from scipy.interpolate._fitpack_py import bisplrep, bisplev, splrep, spalde
- from scipy.interpolate._fitpack2 import (UnivariateSpline,
- LSQUnivariateSpline, InterpolatedUnivariateSpline,
- LSQBivariateSpline, SmoothBivariateSpline, RectBivariateSpline,
- LSQSphereBivariateSpline, SmoothSphereBivariateSpline,
- RectSphereBivariateSpline)
- class TestUnivariateSpline:
- def test_linear_constant(self):
- x = [1,2,3]
- y = [3,3,3]
- lut = UnivariateSpline(x,y,k=1)
- assert_array_almost_equal(lut.get_knots(),[1,3])
- assert_array_almost_equal(lut.get_coeffs(),[3,3])
- assert_almost_equal(lut.get_residual(),0.0)
- assert_array_almost_equal(lut([1,1.5,2]),[3,3,3])
- def test_preserve_shape(self):
- x = [1, 2, 3]
- y = [0, 2, 4]
- lut = UnivariateSpline(x, y, k=1)
- arg = 2
- assert_equal(shape(arg), shape(lut(arg)))
- assert_equal(shape(arg), shape(lut(arg, nu=1)))
- arg = [1.5, 2, 2.5]
- assert_equal(shape(arg), shape(lut(arg)))
- assert_equal(shape(arg), shape(lut(arg, nu=1)))
- def test_linear_1d(self):
- x = [1,2,3]
- y = [0,2,4]
- lut = UnivariateSpline(x,y,k=1)
- assert_array_almost_equal(lut.get_knots(),[1,3])
- assert_array_almost_equal(lut.get_coeffs(),[0,4])
- assert_almost_equal(lut.get_residual(),0.0)
- assert_array_almost_equal(lut([1,1.5,2]),[0,1,2])
- def test_subclassing(self):
- # See #731
- class ZeroSpline(UnivariateSpline):
- def __call__(self, x):
- return 0*array(x)
- sp = ZeroSpline([1,2,3,4,5], [3,2,3,2,3], k=2)
- assert_array_equal(sp([1.5, 2.5]), [0., 0.])
- def test_empty_input(self):
- # Test whether empty input returns an empty output. Ticket 1014
- x = [1,3,5,7,9]
- y = [0,4,9,12,21]
- spl = UnivariateSpline(x, y, k=3)
- assert_array_equal(spl([]), array([]))
- def test_roots(self):
- x = [1, 3, 5, 7, 9]
- y = [0, 4, 9, 12, 21]
- spl = UnivariateSpline(x, y, k=3)
- assert_almost_equal(spl.roots()[0], 1.050290639101332)
- def test_derivatives(self):
- x = [1, 3, 5, 7, 9]
- y = [0, 4, 9, 12, 21]
- spl = UnivariateSpline(x, y, k=3)
- assert_almost_equal(spl.derivatives(3.5),
- [5.5152902, 1.7146577, -0.1830357, 0.3125])
- def test_derivatives_2(self):
- x = np.arange(8)
- y = x**3 + 2.*x**2
- tck = splrep(x, y, s=0)
- ders = spalde(3, tck)
- assert_allclose(ders, [45., # 3**3 + 2*(3)**2
- 39., # 3*(3)**2 + 4*(3)
- 22., # 6*(3) + 4
- 6.], # 6*3**0
- atol=1e-15)
- spl = UnivariateSpline(x, y, s=0, k=3)
- assert_allclose(spl.derivatives(3),
- ders,
- atol=1e-15)
- def test_resize_regression(self):
- """Regression test for #1375."""
- x = [-1., -0.65016502, -0.58856235, -0.26903553, -0.17370892,
- -0.10011001, 0., 0.10011001, 0.17370892, 0.26903553, 0.58856235,
- 0.65016502, 1.]
- y = [1.,0.62928599, 0.5797223, 0.39965815, 0.36322694, 0.3508061,
- 0.35214793, 0.3508061, 0.36322694, 0.39965815, 0.5797223,
- 0.62928599, 1.]
- w = [1.00000000e+12, 6.88875973e+02, 4.89314737e+02, 4.26864807e+02,
- 6.07746770e+02, 4.51341444e+02, 3.17480210e+02, 4.51341444e+02,
- 6.07746770e+02, 4.26864807e+02, 4.89314737e+02, 6.88875973e+02,
- 1.00000000e+12]
- spl = UnivariateSpline(x=x, y=y, w=w, s=None)
- desired = array([0.35100374, 0.51715855, 0.87789547, 0.98719344])
- assert_allclose(spl([0.1, 0.5, 0.9, 0.99]), desired, atol=5e-4)
- def test_out_of_range_regression(self):
- # Test different extrapolation modes. See ticket 3557
- x = np.arange(5, dtype=float)
- y = x**3
- xp = linspace(-8, 13, 100)
- xp_zeros = xp.copy()
- xp_zeros[np.logical_or(xp_zeros < 0., xp_zeros > 4.)] = 0
- xp_clip = xp.copy()
- xp_clip[xp_clip < x[0]] = x[0]
- xp_clip[xp_clip > x[-1]] = x[-1]
- for cls in [UnivariateSpline, InterpolatedUnivariateSpline]:
- spl = cls(x=x, y=y)
- for ext in [0, 'extrapolate']:
- assert_allclose(spl(xp, ext=ext), xp**3, atol=1e-16)
- assert_allclose(cls(x, y, ext=ext)(xp), xp**3, atol=1e-16)
- for ext in [1, 'zeros']:
- assert_allclose(spl(xp, ext=ext), xp_zeros**3, atol=1e-16)
- assert_allclose(cls(x, y, ext=ext)(xp), xp_zeros**3, atol=1e-16)
- for ext in [2, 'raise']:
- assert_raises(ValueError, spl, xp, **dict(ext=ext))
- for ext in [3, 'const']:
- assert_allclose(spl(xp, ext=ext), xp_clip**3, atol=1e-16)
- assert_allclose(cls(x, y, ext=ext)(xp), xp_clip**3, atol=1e-16)
- # also test LSQUnivariateSpline [which needs explicit knots]
- t = spl.get_knots()[3:4] # interior knots w/ default k=3
- spl = LSQUnivariateSpline(x, y, t)
- assert_allclose(spl(xp, ext=0), xp**3, atol=1e-16)
- assert_allclose(spl(xp, ext=1), xp_zeros**3, atol=1e-16)
- assert_raises(ValueError, spl, xp, **dict(ext=2))
- assert_allclose(spl(xp, ext=3), xp_clip**3, atol=1e-16)
- # also make sure that unknown values for `ext` are caught early
- for ext in [-1, 'unknown']:
- spl = UnivariateSpline(x, y)
- assert_raises(ValueError, spl, xp, **dict(ext=ext))
- assert_raises(ValueError, UnivariateSpline,
- **dict(x=x, y=y, ext=ext))
- def test_lsq_fpchec(self):
- xs = np.arange(100) * 1.
- ys = np.arange(100) * 1.
- knots = np.linspace(0, 99, 10)
- bbox = (-1, 101)
- assert_raises(ValueError, LSQUnivariateSpline, xs, ys, knots,
- bbox=bbox)
- def test_derivative_and_antiderivative(self):
- # Thin wrappers to splder/splantider, so light smoke test only.
- x = np.linspace(0, 1, 70)**3
- y = np.cos(x)
- spl = UnivariateSpline(x, y, s=0)
- spl2 = spl.antiderivative(2).derivative(2)
- assert_allclose(spl(0.3), spl2(0.3))
- spl2 = spl.antiderivative(1)
- assert_allclose(spl2(0.6) - spl2(0.2),
- spl.integral(0.2, 0.6))
- def test_derivative_extrapolation(self):
- # Regression test for gh-10195: for a const-extrapolation spline
- # its derivative evaluates to zero for extrapolation
- x_values = [1, 2, 4, 6, 8.5]
- y_values = [0.5, 0.8, 1.3, 2.5, 5]
- f = UnivariateSpline(x_values, y_values, ext='const', k=3)
- x = [-1, 0, -0.5, 9, 9.5, 10]
- assert_allclose(f.derivative()(x), 0, atol=1e-15)
- def test_integral_out_of_bounds(self):
- # Regression test for gh-7906: .integral(a, b) is wrong if both
- # a and b are out-of-bounds
- x = np.linspace(0., 1., 7)
- for ext in range(4):
- f = UnivariateSpline(x, x, s=0, ext=ext)
- for (a, b) in [(1, 1), (1, 5), (2, 5),
- (0, 0), (-2, 0), (-2, -1)]:
- assert_allclose(f.integral(a, b), 0, atol=1e-15)
- def test_nan(self):
- # bail out early if the input data contains nans
- x = np.arange(10, dtype=float)
- y = x**3
- w = np.ones_like(x)
- # also test LSQUnivariateSpline [which needs explicit knots]
- spl = UnivariateSpline(x, y, check_finite=True)
- t = spl.get_knots()[3:4] # interior knots w/ default k=3
- y_end = y[-1]
- for z in [np.nan, np.inf, -np.inf]:
- y[-1] = z
- assert_raises(ValueError, UnivariateSpline,
- **dict(x=x, y=y, check_finite=True))
- assert_raises(ValueError, InterpolatedUnivariateSpline,
- **dict(x=x, y=y, check_finite=True))
- assert_raises(ValueError, LSQUnivariateSpline,
- **dict(x=x, y=y, t=t, check_finite=True))
- y[-1] = y_end # check valid y but invalid w
- w[-1] = z
- assert_raises(ValueError, UnivariateSpline,
- **dict(x=x, y=y, w=w, check_finite=True))
- assert_raises(ValueError, InterpolatedUnivariateSpline,
- **dict(x=x, y=y, w=w, check_finite=True))
- assert_raises(ValueError, LSQUnivariateSpline,
- **dict(x=x, y=y, t=t, w=w, check_finite=True))
- def test_strictly_increasing_x(self):
- # Test the x is required to be strictly increasing for
- # UnivariateSpline if s=0 and for InterpolatedUnivariateSpline,
- # but merely increasing for UnivariateSpline if s>0
- # and for LSQUnivariateSpline; see gh-8535
- xx = np.arange(10, dtype=float)
- yy = xx**3
- x = np.arange(10, dtype=float)
- x[1] = x[0]
- y = x**3
- w = np.ones_like(x)
- # also test LSQUnivariateSpline [which needs explicit knots]
- spl = UnivariateSpline(xx, yy, check_finite=True)
- t = spl.get_knots()[3:4] # interior knots w/ default k=3
- UnivariateSpline(x=x, y=y, w=w, s=1, check_finite=True)
- LSQUnivariateSpline(x=x, y=y, t=t, w=w, check_finite=True)
- assert_raises(ValueError, UnivariateSpline,
- **dict(x=x, y=y, s=0, check_finite=True))
- assert_raises(ValueError, InterpolatedUnivariateSpline,
- **dict(x=x, y=y, check_finite=True))
- def test_increasing_x(self):
- # Test that x is required to be increasing, see gh-8535
- xx = np.arange(10, dtype=float)
- yy = xx**3
- x = np.arange(10, dtype=float)
- x[1] = x[0] - 1.0
- y = x**3
- w = np.ones_like(x)
- # also test LSQUnivariateSpline [which needs explicit knots]
- spl = UnivariateSpline(xx, yy, check_finite=True)
- t = spl.get_knots()[3:4] # interior knots w/ default k=3
- assert_raises(ValueError, UnivariateSpline,
- **dict(x=x, y=y, check_finite=True))
- assert_raises(ValueError, InterpolatedUnivariateSpline,
- **dict(x=x, y=y, check_finite=True))
- assert_raises(ValueError, LSQUnivariateSpline,
- **dict(x=x, y=y, t=t, w=w, check_finite=True))
- def test_invalid_input_for_univariate_spline(self):
- with assert_raises(ValueError) as info:
- x_values = [1, 2, 4, 6, 8.5]
- y_values = [0.5, 0.8, 1.3, 2.5]
- UnivariateSpline(x_values, y_values)
- assert "x and y should have a same length" in str(info.value)
- with assert_raises(ValueError) as info:
- x_values = [1, 2, 4, 6, 8.5]
- y_values = [0.5, 0.8, 1.3, 2.5, 2.8]
- w_values = [-1.0, 1.0, 1.0, 1.0]
- UnivariateSpline(x_values, y_values, w=w_values)
- assert "x, y, and w should have a same length" in str(info.value)
- with assert_raises(ValueError) as info:
- bbox = (-1)
- UnivariateSpline(x_values, y_values, bbox=bbox)
- assert "bbox shape should be (2,)" in str(info.value)
- with assert_raises(ValueError) as info:
- UnivariateSpline(x_values, y_values, k=6)
- assert "k should be 1 <= k <= 5" in str(info.value)
- with assert_raises(ValueError) as info:
- UnivariateSpline(x_values, y_values, s=-1.0)
- assert "s should be s >= 0.0" in str(info.value)
- def test_invalid_input_for_interpolated_univariate_spline(self):
- with assert_raises(ValueError) as info:
- x_values = [1, 2, 4, 6, 8.5]
- y_values = [0.5, 0.8, 1.3, 2.5]
- InterpolatedUnivariateSpline(x_values, y_values)
- assert "x and y should have a same length" in str(info.value)
- with assert_raises(ValueError) as info:
- x_values = [1, 2, 4, 6, 8.5]
- y_values = [0.5, 0.8, 1.3, 2.5, 2.8]
- w_values = [-1.0, 1.0, 1.0, 1.0]
- InterpolatedUnivariateSpline(x_values, y_values, w=w_values)
- assert "x, y, and w should have a same length" in str(info.value)
- with assert_raises(ValueError) as info:
- bbox = (-1)
- InterpolatedUnivariateSpline(x_values, y_values, bbox=bbox)
- assert "bbox shape should be (2,)" in str(info.value)
- with assert_raises(ValueError) as info:
- InterpolatedUnivariateSpline(x_values, y_values, k=6)
- assert "k should be 1 <= k <= 5" in str(info.value)
- def test_invalid_input_for_lsq_univariate_spline(self):
- x_values = [1, 2, 4, 6, 8.5]
- y_values = [0.5, 0.8, 1.3, 2.5, 2.8]
- spl = UnivariateSpline(x_values, y_values, check_finite=True)
- t_values = spl.get_knots()[3:4] # interior knots w/ default k=3
- with assert_raises(ValueError) as info:
- x_values = [1, 2, 4, 6, 8.5]
- y_values = [0.5, 0.8, 1.3, 2.5]
- LSQUnivariateSpline(x_values, y_values, t_values)
- assert "x and y should have a same length" in str(info.value)
- with assert_raises(ValueError) as info:
- x_values = [1, 2, 4, 6, 8.5]
- y_values = [0.5, 0.8, 1.3, 2.5, 2.8]
- w_values = [1.0, 1.0, 1.0, 1.0]
- LSQUnivariateSpline(x_values, y_values, t_values, w=w_values)
- assert "x, y, and w should have a same length" in str(info.value)
- with assert_raises(ValueError) as info:
- bbox = (100, -100)
- LSQUnivariateSpline(x_values, y_values, t_values, bbox=bbox)
- assert "Interior knots t must satisfy Schoenberg-Whitney conditions" in str(info.value)
- with assert_raises(ValueError) as info:
- bbox = (-1)
- LSQUnivariateSpline(x_values, y_values, t_values, bbox=bbox)
- assert "bbox shape should be (2,)" in str(info.value)
- with assert_raises(ValueError) as info:
- LSQUnivariateSpline(x_values, y_values, t_values, k=6)
- assert "k should be 1 <= k <= 5" in str(info.value)
- def test_array_like_input(self):
- x_values = np.array([1, 2, 4, 6, 8.5])
- y_values = np.array([0.5, 0.8, 1.3, 2.5, 2.8])
- w_values = np.array([1.0, 1.0, 1.0, 1.0, 1.0])
- bbox = np.array([-100, 100])
- # np.array input
- spl1 = UnivariateSpline(x=x_values, y=y_values, w=w_values,
- bbox=bbox)
- # list input
- spl2 = UnivariateSpline(x=x_values.tolist(), y=y_values.tolist(),
- w=w_values.tolist(), bbox=bbox.tolist())
- assert_allclose(spl1([0.1, 0.5, 0.9, 0.99]),
- spl2([0.1, 0.5, 0.9, 0.99]))
- def test_fpknot_oob_crash(self):
- # https://github.com/scipy/scipy/issues/3691
- x = range(109)
- y = [0., 0., 0., 0., 0., 10.9, 0., 11., 0.,
- 0., 0., 10.9, 0., 0., 0., 0., 0., 0.,
- 10.9, 0., 0., 0., 11., 0., 0., 0., 10.9,
- 0., 0., 0., 10.5, 0., 0., 0., 10.7, 0.,
- 0., 0., 11., 0., 0., 0., 0., 0., 0.,
- 10.9, 0., 0., 10.7, 0., 0., 0., 10.6, 0.,
- 0., 0., 10.5, 0., 0., 10.7, 0., 0., 10.5,
- 0., 0., 11.5, 0., 0., 0., 10.7, 0., 0.,
- 10.7, 0., 0., 10.9, 0., 0., 10.8, 0., 0.,
- 0., 10.7, 0., 0., 10.6, 0., 0., 0., 10.4,
- 0., 0., 10.6, 0., 0., 10.5, 0., 0., 0.,
- 10.7, 0., 0., 0., 10.4, 0., 0., 0., 10.8, 0.]
- with suppress_warnings() as sup:
- r = sup.record(
- UserWarning,
- r"""
- The maximal number of iterations maxit \(set to 20 by the program\)
- allowed for finding a smoothing spline with fp=s has been reached: s
- too small.
- There is an approximation returned but the corresponding weighted sum
- of squared residuals does not satisfy the condition abs\(fp-s\)/s < tol.""")
- UnivariateSpline(x, y, k=1)
- assert_equal(len(r), 1)
- class TestLSQBivariateSpline:
- # NOTE: The systems in this test class are rank-deficient
- def test_linear_constant(self):
- x = [1,1,1,2,2,2,3,3,3]
- y = [1,2,3,1,2,3,1,2,3]
- z = [3,3,3,3,3,3,3,3,3]
- s = 0.1
- tx = [1+s,3-s]
- ty = [1+s,3-s]
- with suppress_warnings() as sup:
- r = sup.record(UserWarning, "\nThe coefficients of the spline")
- lut = LSQBivariateSpline(x,y,z,tx,ty,kx=1,ky=1)
- assert_equal(len(r), 1)
- assert_almost_equal(lut(2,2), 3.)
- def test_bilinearity(self):
- x = [1,1,1,2,2,2,3,3,3]
- y = [1,2,3,1,2,3,1,2,3]
- z = [0,7,8,3,4,7,1,3,4]
- s = 0.1
- tx = [1+s,3-s]
- ty = [1+s,3-s]
- with suppress_warnings() as sup:
- # This seems to fail (ier=1, see ticket 1642).
- sup.filter(UserWarning, "\nThe coefficients of the spline")
- lut = LSQBivariateSpline(x,y,z,tx,ty,kx=1,ky=1)
- tx, ty = lut.get_knots()
- for xa, xb in zip(tx[:-1], tx[1:]):
- for ya, yb in zip(ty[:-1], ty[1:]):
- for t in [0.1, 0.5, 0.9]:
- for s in [0.3, 0.4, 0.7]:
- xp = xa*(1-t) + xb*t
- yp = ya*(1-s) + yb*s
- zp = (+ lut(xa, ya)*(1-t)*(1-s)
- + lut(xb, ya)*t*(1-s)
- + lut(xa, yb)*(1-t)*s
- + lut(xb, yb)*t*s)
- assert_almost_equal(lut(xp,yp), zp)
- def test_integral(self):
- x = [1,1,1,2,2,2,8,8,8]
- y = [1,2,3,1,2,3,1,2,3]
- z = array([0,7,8,3,4,7,1,3,4])
- s = 0.1
- tx = [1+s,3-s]
- ty = [1+s,3-s]
- with suppress_warnings() as sup:
- r = sup.record(UserWarning, "\nThe coefficients of the spline")
- lut = LSQBivariateSpline(x, y, z, tx, ty, kx=1, ky=1)
- assert_equal(len(r), 1)
- tx, ty = lut.get_knots()
- tz = lut(tx, ty)
- trpz = .25*(diff(tx)[:,None]*diff(ty)[None,:]
- * (tz[:-1,:-1]+tz[1:,:-1]+tz[:-1,1:]+tz[1:,1:])).sum()
- assert_almost_equal(lut.integral(tx[0], tx[-1], ty[0], ty[-1]),
- trpz)
- def test_empty_input(self):
- # Test whether empty inputs returns an empty output. Ticket 1014
- x = [1,1,1,2,2,2,3,3,3]
- y = [1,2,3,1,2,3,1,2,3]
- z = [3,3,3,3,3,3,3,3,3]
- s = 0.1
- tx = [1+s,3-s]
- ty = [1+s,3-s]
- with suppress_warnings() as sup:
- r = sup.record(UserWarning, "\nThe coefficients of the spline")
- lut = LSQBivariateSpline(x, y, z, tx, ty, kx=1, ky=1)
- assert_equal(len(r), 1)
- assert_array_equal(lut([], []), np.zeros((0,0)))
- assert_array_equal(lut([], [], grid=False), np.zeros((0,)))
- def test_invalid_input(self):
- s = 0.1
- tx = [1 + s, 3 - s]
- ty = [1 + s, 3 - s]
- with assert_raises(ValueError) as info:
- x = np.linspace(1.0, 10.0)
- y = np.linspace(1.0, 10.0)
- z = np.linspace(1.0, 10.0, num=10)
- LSQBivariateSpline(x, y, z, tx, ty)
- assert "x, y, and z should have a same length" in str(info.value)
- with assert_raises(ValueError) as info:
- x = np.linspace(1.0, 10.0)
- y = np.linspace(1.0, 10.0)
- z = np.linspace(1.0, 10.0)
- w = np.linspace(1.0, 10.0, num=20)
- LSQBivariateSpline(x, y, z, tx, ty, w=w)
- assert "x, y, z, and w should have a same length" in str(info.value)
- with assert_raises(ValueError) as info:
- w = np.linspace(-1.0, 10.0)
- LSQBivariateSpline(x, y, z, tx, ty, w=w)
- assert "w should be positive" in str(info.value)
- with assert_raises(ValueError) as info:
- bbox = (-100, 100, -100)
- LSQBivariateSpline(x, y, z, tx, ty, bbox=bbox)
- assert "bbox shape should be (4,)" in str(info.value)
- with assert_raises(ValueError) as info:
- LSQBivariateSpline(x, y, z, tx, ty, kx=10, ky=10)
- assert "The length of x, y and z should be at least (kx+1) * (ky+1)" in \
- str(info.value)
- with assert_raises(ValueError) as exc_info:
- LSQBivariateSpline(x, y, z, tx, ty, eps=0.0)
- assert "eps should be between (0, 1)" in str(exc_info.value)
- with assert_raises(ValueError) as exc_info:
- LSQBivariateSpline(x, y, z, tx, ty, eps=1.0)
- assert "eps should be between (0, 1)" in str(exc_info.value)
- def test_array_like_input(self):
- s = 0.1
- tx = np.array([1 + s, 3 - s])
- ty = np.array([1 + s, 3 - s])
- x = np.linspace(1.0, 10.0)
- y = np.linspace(1.0, 10.0)
- z = np.linspace(1.0, 10.0)
- w = np.linspace(1.0, 10.0)
- bbox = np.array([1.0, 10.0, 1.0, 10.0])
- with suppress_warnings() as sup:
- r = sup.record(UserWarning, "\nThe coefficients of the spline")
- # np.array input
- spl1 = LSQBivariateSpline(x, y, z, tx, ty, w=w, bbox=bbox)
- # list input
- spl2 = LSQBivariateSpline(x.tolist(), y.tolist(), z.tolist(),
- tx.tolist(), ty.tolist(), w=w.tolist(),
- bbox=bbox)
- assert_allclose(spl1(2.0, 2.0), spl2(2.0, 2.0))
- assert_equal(len(r), 2)
- def test_unequal_length_of_knots(self):
- """Test for the case when the input knot-location arrays in x and y are
- of different lengths.
- """
- x, y = np.mgrid[0:100, 0:100]
- x = x.ravel()
- y = y.ravel()
- z = 3.0 * np.ones_like(x)
- tx = np.linspace(0.1, 98.0, 29)
- ty = np.linspace(0.1, 98.0, 33)
- with suppress_warnings() as sup:
- r = sup.record(UserWarning, "\nThe coefficients of the spline")
- lut = LSQBivariateSpline(x,y,z,tx,ty)
- assert_equal(len(r), 1)
- assert_almost_equal(lut(x, y, grid=False), z)
- class TestSmoothBivariateSpline:
- def test_linear_constant(self):
- x = [1,1,1,2,2,2,3,3,3]
- y = [1,2,3,1,2,3,1,2,3]
- z = [3,3,3,3,3,3,3,3,3]
- lut = SmoothBivariateSpline(x,y,z,kx=1,ky=1)
- assert_array_almost_equal(lut.get_knots(),([1,1,3,3],[1,1,3,3]))
- assert_array_almost_equal(lut.get_coeffs(),[3,3,3,3])
- assert_almost_equal(lut.get_residual(),0.0)
- assert_array_almost_equal(lut([1,1.5,2],[1,1.5]),[[3,3],[3,3],[3,3]])
- def test_linear_1d(self):
- x = [1,1,1,2,2,2,3,3,3]
- y = [1,2,3,1,2,3,1,2,3]
- z = [0,0,0,2,2,2,4,4,4]
- lut = SmoothBivariateSpline(x,y,z,kx=1,ky=1)
- assert_array_almost_equal(lut.get_knots(),([1,1,3,3],[1,1,3,3]))
- assert_array_almost_equal(lut.get_coeffs(),[0,0,4,4])
- assert_almost_equal(lut.get_residual(),0.0)
- assert_array_almost_equal(lut([1,1.5,2],[1,1.5]),[[0,0],[1,1],[2,2]])
- def test_integral(self):
- x = [1,1,1,2,2,2,4,4,4]
- y = [1,2,3,1,2,3,1,2,3]
- z = array([0,7,8,3,4,7,1,3,4])
- with suppress_warnings() as sup:
- # This seems to fail (ier=1, see ticket 1642).
- sup.filter(UserWarning, "\nThe required storage space")
- lut = SmoothBivariateSpline(x, y, z, kx=1, ky=1, s=0)
- tx = [1,2,4]
- ty = [1,2,3]
- tz = lut(tx, ty)
- trpz = .25*(diff(tx)[:,None]*diff(ty)[None,:]
- * (tz[:-1,:-1]+tz[1:,:-1]+tz[:-1,1:]+tz[1:,1:])).sum()
- assert_almost_equal(lut.integral(tx[0], tx[-1], ty[0], ty[-1]), trpz)
- lut2 = SmoothBivariateSpline(x, y, z, kx=2, ky=2, s=0)
- assert_almost_equal(lut2.integral(tx[0], tx[-1], ty[0], ty[-1]), trpz,
- decimal=0) # the quadratures give 23.75 and 23.85
- tz = lut(tx[:-1], ty[:-1])
- trpz = .25*(diff(tx[:-1])[:,None]*diff(ty[:-1])[None,:]
- * (tz[:-1,:-1]+tz[1:,:-1]+tz[:-1,1:]+tz[1:,1:])).sum()
- assert_almost_equal(lut.integral(tx[0], tx[-2], ty[0], ty[-2]), trpz)
- def test_rerun_lwrk2_too_small(self):
- # in this setting, lwrk2 is too small in the default run. Here we
- # check for equality with the bisplrep/bisplev output because there,
- # an automatic re-run of the spline representation is done if ier>10.
- x = np.linspace(-2, 2, 80)
- y = np.linspace(-2, 2, 80)
- z = x + y
- xi = np.linspace(-1, 1, 100)
- yi = np.linspace(-2, 2, 100)
- tck = bisplrep(x, y, z)
- res1 = bisplev(xi, yi, tck)
- interp_ = SmoothBivariateSpline(x, y, z)
- res2 = interp_(xi, yi)
- assert_almost_equal(res1, res2)
- def test_invalid_input(self):
- with assert_raises(ValueError) as info:
- x = np.linspace(1.0, 10.0)
- y = np.linspace(1.0, 10.0)
- z = np.linspace(1.0, 10.0, num=10)
- SmoothBivariateSpline(x, y, z)
- assert "x, y, and z should have a same length" in str(info.value)
- with assert_raises(ValueError) as info:
- x = np.linspace(1.0, 10.0)
- y = np.linspace(1.0, 10.0)
- z = np.linspace(1.0, 10.0)
- w = np.linspace(1.0, 10.0, num=20)
- SmoothBivariateSpline(x, y, z, w=w)
- assert "x, y, z, and w should have a same length" in str(info.value)
- with assert_raises(ValueError) as info:
- w = np.linspace(-1.0, 10.0)
- SmoothBivariateSpline(x, y, z, w=w)
- assert "w should be positive" in str(info.value)
- with assert_raises(ValueError) as info:
- bbox = (-100, 100, -100)
- SmoothBivariateSpline(x, y, z, bbox=bbox)
- assert "bbox shape should be (4,)" in str(info.value)
- with assert_raises(ValueError) as info:
- SmoothBivariateSpline(x, y, z, kx=10, ky=10)
- assert "The length of x, y and z should be at least (kx+1) * (ky+1)" in\
- str(info.value)
- with assert_raises(ValueError) as info:
- SmoothBivariateSpline(x, y, z, s=-1.0)
- assert "s should be s >= 0.0" in str(info.value)
- with assert_raises(ValueError) as exc_info:
- SmoothBivariateSpline(x, y, z, eps=0.0)
- assert "eps should be between (0, 1)" in str(exc_info.value)
- with assert_raises(ValueError) as exc_info:
- SmoothBivariateSpline(x, y, z, eps=1.0)
- assert "eps should be between (0, 1)" in str(exc_info.value)
- def test_array_like_input(self):
- x = np.array([1, 1, 1, 2, 2, 2, 3, 3, 3])
- y = np.array([1, 2, 3, 1, 2, 3, 1, 2, 3])
- z = np.array([3, 3, 3, 3, 3, 3, 3, 3, 3])
- w = np.array([1, 1, 1, 1, 1, 1, 1, 1, 1])
- bbox = np.array([1.0, 3.0, 1.0, 3.0])
- # np.array input
- spl1 = SmoothBivariateSpline(x, y, z, w=w, bbox=bbox, kx=1, ky=1)
- # list input
- spl2 = SmoothBivariateSpline(x.tolist(), y.tolist(), z.tolist(),
- bbox=bbox.tolist(), w=w.tolist(),
- kx=1, ky=1)
- assert_allclose(spl1(0.1, 0.5), spl2(0.1, 0.5))
- class TestLSQSphereBivariateSpline:
- def setup_method(self):
- # define the input data and coordinates
- ntheta, nphi = 70, 90
- theta = linspace(0.5/(ntheta - 1), 1 - 0.5/(ntheta - 1), ntheta) * pi
- phi = linspace(0.5/(nphi - 1), 1 - 0.5/(nphi - 1), nphi) * 2. * pi
- data = ones((theta.shape[0], phi.shape[0]))
- # define knots and extract data values at the knots
- knotst = theta[::5]
- knotsp = phi[::5]
- knotdata = data[::5, ::5]
- # calculate spline coefficients
- lats, lons = meshgrid(theta, phi)
- lut_lsq = LSQSphereBivariateSpline(lats.ravel(), lons.ravel(),
- data.T.ravel(), knotst, knotsp)
- self.lut_lsq = lut_lsq
- self.data = knotdata
- self.new_lons, self.new_lats = knotsp, knotst
- def test_linear_constant(self):
- assert_almost_equal(self.lut_lsq.get_residual(), 0.0)
- assert_array_almost_equal(self.lut_lsq(self.new_lats, self.new_lons),
- self.data)
- def test_empty_input(self):
- assert_array_almost_equal(self.lut_lsq([], []), np.zeros((0,0)))
- assert_array_almost_equal(self.lut_lsq([], [], grid=False), np.zeros((0,)))
- def test_invalid_input(self):
- ntheta, nphi = 70, 90
- theta = linspace(0.5 / (ntheta - 1), 1 - 0.5 / (ntheta - 1),
- ntheta) * pi
- phi = linspace(0.5 / (nphi - 1), 1 - 0.5 / (nphi - 1), nphi) * 2. * pi
- data = ones((theta.shape[0], phi.shape[0]))
- # define knots and extract data values at the knots
- knotst = theta[::5]
- knotsp = phi[::5]
- with assert_raises(ValueError) as exc_info:
- invalid_theta = linspace(-0.1, 1.0, num=ntheta) * pi
- invalid_lats, lons = meshgrid(invalid_theta, phi)
- LSQSphereBivariateSpline(invalid_lats.ravel(), lons.ravel(),
- data.T.ravel(), knotst, knotsp)
- assert "theta should be between [0, pi]" in str(exc_info.value)
- with assert_raises(ValueError) as exc_info:
- invalid_theta = linspace(0.1, 1.1, num=ntheta) * pi
- invalid_lats, lons = meshgrid(invalid_theta, phi)
- LSQSphereBivariateSpline(invalid_lats.ravel(), lons.ravel(),
- data.T.ravel(), knotst, knotsp)
- assert "theta should be between [0, pi]" in str(exc_info.value)
- with assert_raises(ValueError) as exc_info:
- invalid_phi = linspace(-0.1, 1.0, num=ntheta) * 2.0 * pi
- lats, invalid_lons = meshgrid(theta, invalid_phi)
- LSQSphereBivariateSpline(lats.ravel(), invalid_lons.ravel(),
- data.T.ravel(), knotst, knotsp)
- assert "phi should be between [0, 2pi]" in str(exc_info.value)
- with assert_raises(ValueError) as exc_info:
- invalid_phi = linspace(0.0, 1.1, num=ntheta) * 2.0 * pi
- lats, invalid_lons = meshgrid(theta, invalid_phi)
- LSQSphereBivariateSpline(lats.ravel(), invalid_lons.ravel(),
- data.T.ravel(), knotst, knotsp)
- assert "phi should be between [0, 2pi]" in str(exc_info.value)
- lats, lons = meshgrid(theta, phi)
- with assert_raises(ValueError) as exc_info:
- invalid_knotst = np.copy(knotst)
- invalid_knotst[0] = -0.1
- LSQSphereBivariateSpline(lats.ravel(), lons.ravel(),
- data.T.ravel(), invalid_knotst, knotsp)
- assert "tt should be between (0, pi)" in str(exc_info.value)
- with assert_raises(ValueError) as exc_info:
- invalid_knotst = np.copy(knotst)
- invalid_knotst[0] = pi
- LSQSphereBivariateSpline(lats.ravel(), lons.ravel(),
- data.T.ravel(), invalid_knotst, knotsp)
- assert "tt should be between (0, pi)" in str(exc_info.value)
- with assert_raises(ValueError) as exc_info:
- invalid_knotsp = np.copy(knotsp)
- invalid_knotsp[0] = -0.1
- LSQSphereBivariateSpline(lats.ravel(), lons.ravel(),
- data.T.ravel(), knotst, invalid_knotsp)
- assert "tp should be between (0, 2pi)" in str(exc_info.value)
- with assert_raises(ValueError) as exc_info:
- invalid_knotsp = np.copy(knotsp)
- invalid_knotsp[0] = 2 * pi
- LSQSphereBivariateSpline(lats.ravel(), lons.ravel(),
- data.T.ravel(), knotst, invalid_knotsp)
- assert "tp should be between (0, 2pi)" in str(exc_info.value)
- with assert_raises(ValueError) as exc_info:
- invalid_w = array([-1.0, 1.0, 1.5, 0.5, 1.0, 1.5, 0.5, 1.0, 1.0])
- LSQSphereBivariateSpline(lats.ravel(), lons.ravel(), data.T.ravel(),
- knotst, knotsp, w=invalid_w)
- assert "w should be positive" in str(exc_info.value)
- with assert_raises(ValueError) as exc_info:
- LSQSphereBivariateSpline(lats.ravel(), lons.ravel(), data.T.ravel(),
- knotst, knotsp, eps=0.0)
- assert "eps should be between (0, 1)" in str(exc_info.value)
- with assert_raises(ValueError) as exc_info:
- LSQSphereBivariateSpline(lats.ravel(), lons.ravel(), data.T.ravel(),
- knotst, knotsp, eps=1.0)
- assert "eps should be between (0, 1)" in str(exc_info.value)
- def test_array_like_input(self):
- ntheta, nphi = 70, 90
- theta = linspace(0.5 / (ntheta - 1), 1 - 0.5 / (ntheta - 1),
- ntheta) * pi
- phi = linspace(0.5 / (nphi - 1), 1 - 0.5 / (nphi - 1),
- nphi) * 2. * pi
- lats, lons = meshgrid(theta, phi)
- data = ones((theta.shape[0], phi.shape[0]))
- # define knots and extract data values at the knots
- knotst = theta[::5]
- knotsp = phi[::5]
- w = ones((lats.ravel().shape[0]))
- # np.array input
- spl1 = LSQSphereBivariateSpline(lats.ravel(), lons.ravel(),
- data.T.ravel(), knotst, knotsp, w=w)
- # list input
- spl2 = LSQSphereBivariateSpline(lats.ravel().tolist(),
- lons.ravel().tolist(),
- data.T.ravel().tolist(),
- knotst.tolist(),
- knotsp.tolist(), w=w.tolist())
- assert_array_almost_equal(spl1(1.0, 1.0), spl2(1.0, 1.0))
- class TestSmoothSphereBivariateSpline:
- def setup_method(self):
- theta = array([.25*pi, .25*pi, .25*pi, .5*pi, .5*pi, .5*pi, .75*pi,
- .75*pi, .75*pi])
- phi = array([.5 * pi, pi, 1.5 * pi, .5 * pi, pi, 1.5 * pi, .5 * pi, pi,
- 1.5 * pi])
- r = array([3, 3, 3, 3, 3, 3, 3, 3, 3])
- self.lut = SmoothSphereBivariateSpline(theta, phi, r, s=1E10)
- def test_linear_constant(self):
- assert_almost_equal(self.lut.get_residual(), 0.)
- assert_array_almost_equal(self.lut([1, 1.5, 2],[1, 1.5]),
- [[3, 3], [3, 3], [3, 3]])
- def test_empty_input(self):
- assert_array_almost_equal(self.lut([], []), np.zeros((0,0)))
- assert_array_almost_equal(self.lut([], [], grid=False), np.zeros((0,)))
- def test_invalid_input(self):
- theta = array([.25 * pi, .25 * pi, .25 * pi, .5 * pi, .5 * pi, .5 * pi,
- .75 * pi, .75 * pi, .75 * pi])
- phi = array([.5 * pi, pi, 1.5 * pi, .5 * pi, pi, 1.5 * pi, .5 * pi, pi,
- 1.5 * pi])
- r = array([3, 3, 3, 3, 3, 3, 3, 3, 3])
- with assert_raises(ValueError) as exc_info:
- invalid_theta = array([-0.1 * pi, .25 * pi, .25 * pi, .5 * pi,
- .5 * pi, .5 * pi, .75 * pi, .75 * pi,
- .75 * pi])
- SmoothSphereBivariateSpline(invalid_theta, phi, r, s=1E10)
- assert "theta should be between [0, pi]" in str(exc_info.value)
- with assert_raises(ValueError) as exc_info:
- invalid_theta = array([.25 * pi, .25 * pi, .25 * pi, .5 * pi,
- .5 * pi, .5 * pi, .75 * pi, .75 * pi,
- 1.1 * pi])
- SmoothSphereBivariateSpline(invalid_theta, phi, r, s=1E10)
- assert "theta should be between [0, pi]" in str(exc_info.value)
- with assert_raises(ValueError) as exc_info:
- invalid_phi = array([-.1 * pi, pi, 1.5 * pi, .5 * pi, pi, 1.5 * pi,
- .5 * pi, pi, 1.5 * pi])
- SmoothSphereBivariateSpline(theta, invalid_phi, r, s=1E10)
- assert "phi should be between [0, 2pi]" in str(exc_info.value)
- with assert_raises(ValueError) as exc_info:
- invalid_phi = array([1.0 * pi, pi, 1.5 * pi, .5 * pi, pi, 1.5 * pi,
- .5 * pi, pi, 2.1 * pi])
- SmoothSphereBivariateSpline(theta, invalid_phi, r, s=1E10)
- assert "phi should be between [0, 2pi]" in str(exc_info.value)
- with assert_raises(ValueError) as exc_info:
- invalid_w = array([-1.0, 1.0, 1.5, 0.5, 1.0, 1.5, 0.5, 1.0, 1.0])
- SmoothSphereBivariateSpline(theta, phi, r, w=invalid_w, s=1E10)
- assert "w should be positive" in str(exc_info.value)
- with assert_raises(ValueError) as exc_info:
- SmoothSphereBivariateSpline(theta, phi, r, s=-1.0)
- assert "s should be positive" in str(exc_info.value)
- with assert_raises(ValueError) as exc_info:
- SmoothSphereBivariateSpline(theta, phi, r, eps=-1.0)
- assert "eps should be between (0, 1)" in str(exc_info.value)
- with assert_raises(ValueError) as exc_info:
- SmoothSphereBivariateSpline(theta, phi, r, eps=1.0)
- assert "eps should be between (0, 1)" in str(exc_info.value)
- def test_array_like_input(self):
- theta = np.array([.25 * pi, .25 * pi, .25 * pi, .5 * pi, .5 * pi,
- .5 * pi, .75 * pi, .75 * pi, .75 * pi])
- phi = np.array([.5 * pi, pi, 1.5 * pi, .5 * pi, pi, 1.5 * pi, .5 * pi,
- pi, 1.5 * pi])
- r = np.array([3, 3, 3, 3, 3, 3, 3, 3, 3])
- w = np.array([1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0])
- # np.array input
- spl1 = SmoothSphereBivariateSpline(theta, phi, r, w=w, s=1E10)
- # list input
- spl2 = SmoothSphereBivariateSpline(theta.tolist(), phi.tolist(),
- r.tolist(), w=w.tolist(), s=1E10)
- assert_array_almost_equal(spl1(1.0, 1.0), spl2(1.0, 1.0))
- class TestRectBivariateSpline:
- def test_defaults(self):
- x = array([1,2,3,4,5])
- y = array([1,2,3,4,5])
- z = array([[1,2,1,2,1],[1,2,1,2,1],[1,2,3,2,1],[1,2,2,2,1],[1,2,1,2,1]])
- lut = RectBivariateSpline(x,y,z)
- assert_array_almost_equal(lut(x,y),z)
- def test_evaluate(self):
- x = array([1,2,3,4,5])
- y = array([1,2,3,4,5])
- z = array([[1,2,1,2,1],[1,2,1,2,1],[1,2,3,2,1],[1,2,2,2,1],[1,2,1,2,1]])
- lut = RectBivariateSpline(x,y,z)
- xi = [1, 2.3, 5.3, 0.5, 3.3, 1.2, 3]
- yi = [1, 3.3, 1.2, 4.0, 5.0, 1.0, 3]
- zi = lut.ev(xi, yi)
- zi2 = array([lut(xp, yp)[0,0] for xp, yp in zip(xi, yi)])
- assert_almost_equal(zi, zi2)
- def test_derivatives_grid(self):
- x = array([1,2,3,4,5])
- y = array([1,2,3,4,5])
- z = array([[1,2,1,2,1],[1,2,1,2,1],[1,2,3,2,1],[1,2,2,2,1],[1,2,1,2,1]])
- dx = array([[0,0,-20,0,0],[0,0,13,0,0],[0,0,4,0,0],
- [0,0,-11,0,0],[0,0,4,0,0]])/6.
- dy = array([[4,-1,0,1,-4],[4,-1,0,1,-4],[0,1.5,0,-1.5,0],
- [2,.25,0,-.25,-2],[4,-1,0,1,-4]])
- dxdy = array([[40,-25,0,25,-40],[-26,16.25,0,-16.25,26],
- [-8,5,0,-5,8],[22,-13.75,0,13.75,-22],[-8,5,0,-5,8]])/6.
- lut = RectBivariateSpline(x,y,z)
- assert_array_almost_equal(lut(x,y,dx=1),dx)
- assert_array_almost_equal(lut(x,y,dy=1),dy)
- assert_array_almost_equal(lut(x,y,dx=1,dy=1),dxdy)
- def test_derivatives(self):
- x = array([1,2,3,4,5])
- y = array([1,2,3,4,5])
- z = array([[1,2,1,2,1],[1,2,1,2,1],[1,2,3,2,1],[1,2,2,2,1],[1,2,1,2,1]])
- dx = array([0,0,2./3,0,0])
- dy = array([4,-1,0,-.25,-4])
- dxdy = array([160,65,0,55,32])/24.
- lut = RectBivariateSpline(x,y,z)
- assert_array_almost_equal(lut(x,y,dx=1,grid=False),dx)
- assert_array_almost_equal(lut(x,y,dy=1,grid=False),dy)
- assert_array_almost_equal(lut(x,y,dx=1,dy=1,grid=False),dxdy)
- def test_partial_derivative_method_grid(self):
- x = array([1, 2, 3, 4, 5])
- y = array([1, 2, 3, 4, 5])
- z = array([[1, 2, 1, 2, 1],
- [1, 2, 1, 2, 1],
- [1, 2, 3, 2, 1],
- [1, 2, 2, 2, 1],
- [1, 2, 1, 2, 1]])
- dx = array([[0, 0, -20, 0, 0],
- [0, 0, 13, 0, 0],
- [0, 0, 4, 0, 0],
- [0, 0, -11, 0, 0],
- [0, 0, 4, 0, 0]]) / 6.
- dy = array([[4, -1, 0, 1, -4],
- [4, -1, 0, 1, -4],
- [0, 1.5, 0, -1.5, 0],
- [2, .25, 0, -.25, -2],
- [4, -1, 0, 1, -4]])
- dxdy = array([[40, -25, 0, 25, -40],
- [-26, 16.25, 0, -16.25, 26],
- [-8, 5, 0, -5, 8],
- [22, -13.75, 0, 13.75, -22],
- [-8, 5, 0, -5, 8]]) / 6.
- lut = RectBivariateSpline(x, y, z)
- assert_array_almost_equal(lut.partial_derivative(1, 0)(x, y), dx)
- assert_array_almost_equal(lut.partial_derivative(0, 1)(x, y), dy)
- assert_array_almost_equal(lut.partial_derivative(1, 1)(x, y), dxdy)
- def test_partial_derivative_method(self):
- x = array([1, 2, 3, 4, 5])
- y = array([1, 2, 3, 4, 5])
- z = array([[1, 2, 1, 2, 1],
- [1, 2, 1, 2, 1],
- [1, 2, 3, 2, 1],
- [1, 2, 2, 2, 1],
- [1, 2, 1, 2, 1]])
- dx = array([0, 0, 2./3, 0, 0])
- dy = array([4, -1, 0, -.25, -4])
- dxdy = array([160, 65, 0, 55, 32]) / 24.
- lut = RectBivariateSpline(x, y, z)
- assert_array_almost_equal(lut.partial_derivative(1, 0)(x, y,
- grid=False),
- dx)
- assert_array_almost_equal(lut.partial_derivative(0, 1)(x, y,
- grid=False),
- dy)
- assert_array_almost_equal(lut.partial_derivative(1, 1)(x, y,
- grid=False),
- dxdy)
- def test_partial_derivative_order_too_large(self):
- x = array([0, 1, 2, 3, 4], dtype=float)
- y = x.copy()
- z = ones((x.size, y.size))
- lut = RectBivariateSpline(x, y, z)
- with assert_raises(ValueError):
- lut.partial_derivative(4, 1)
- def test_broadcast(self):
- x = array([1,2,3,4,5])
- y = array([1,2,3,4,5])
- z = array([[1,2,1,2,1],[1,2,1,2,1],[1,2,3,2,1],[1,2,2,2,1],[1,2,1,2,1]])
- lut = RectBivariateSpline(x,y,z)
- assert_allclose(lut(x, y), lut(x[:,None], y[None,:], grid=False))
- def test_invalid_input(self):
- with assert_raises(ValueError) as info:
- x = array([6, 2, 3, 4, 5])
- y = array([1, 2, 3, 4, 5])
- z = array([[1, 2, 1, 2, 1], [1, 2, 1, 2, 1], [1, 2, 3, 2, 1],
- [1, 2, 2, 2, 1], [1, 2, 1, 2, 1]])
- RectBivariateSpline(x, y, z)
- assert "x must be strictly increasing" in str(info.value)
- with assert_raises(ValueError) as info:
- x = array([1, 2, 3, 4, 5])
- y = array([2, 2, 3, 4, 5])
- z = array([[1, 2, 1, 2, 1], [1, 2, 1, 2, 1], [1, 2, 3, 2, 1],
- [1, 2, 2, 2, 1], [1, 2, 1, 2, 1]])
- RectBivariateSpline(x, y, z)
- assert "y must be strictly increasing" in str(info.value)
- with assert_raises(ValueError) as info:
- x = array([1, 2, 3, 4, 5])
- y = array([1, 2, 3, 4, 5])
- z = array([[1, 2, 1, 2, 1], [1, 2, 1, 2, 1], [1, 2, 3, 2, 1],
- [1, 2, 2, 2, 1]])
- RectBivariateSpline(x, y, z)
- assert "x dimension of z must have same number of elements as x"\
- in str(info.value)
- with assert_raises(ValueError) as info:
- x = array([1, 2, 3, 4, 5])
- y = array([1, 2, 3, 4, 5])
- z = array([[1, 2, 1, 2], [1, 2, 1, 2], [1, 2, 3, 2],
- [1, 2, 2, 2], [1, 2, 1, 2]])
- RectBivariateSpline(x, y, z)
- assert "y dimension of z must have same number of elements as y"\
- in str(info.value)
- with assert_raises(ValueError) as info:
- x = array([1, 2, 3, 4, 5])
- y = array([1, 2, 3, 4, 5])
- z = array([[1, 2, 1, 2, 1], [1, 2, 1, 2, 1], [1, 2, 3, 2, 1],
- [1, 2, 2, 2, 1], [1, 2, 1, 2, 1]])
- bbox = (-100, 100, -100)
- RectBivariateSpline(x, y, z, bbox=bbox)
- assert "bbox shape should be (4,)" in str(info.value)
- with assert_raises(ValueError) as info:
- RectBivariateSpline(x, y, z, s=-1.0)
- assert "s should be s >= 0.0" in str(info.value)
- def test_array_like_input(self):
- x = array([1, 2, 3, 4, 5])
- y = array([1, 2, 3, 4, 5])
- z = array([[1, 2, 1, 2, 1], [1, 2, 1, 2, 1], [1, 2, 3, 2, 1],
- [1, 2, 2, 2, 1], [1, 2, 1, 2, 1]])
- bbox = array([1, 5, 1, 5])
- spl1 = RectBivariateSpline(x, y, z, bbox=bbox)
- spl2 = RectBivariateSpline(x.tolist(), y.tolist(), z.tolist(),
- bbox=bbox.tolist())
- assert_array_almost_equal(spl1(1.0, 1.0), spl2(1.0, 1.0))
- def test_not_increasing_input(self):
- # gh-8565
- NSamp = 20
- Theta = np.random.uniform(0, np.pi, NSamp)
- Phi = np.random.uniform(0, 2 * np.pi, NSamp)
- Data = np.ones(NSamp)
- Interpolator = SmoothSphereBivariateSpline(Theta, Phi, Data, s=3.5)
- NLon = 6
- NLat = 3
- GridPosLats = np.arange(NLat) / NLat * np.pi
- GridPosLons = np.arange(NLon) / NLon * 2 * np.pi
- # No error
- Interpolator(GridPosLats, GridPosLons)
- nonGridPosLats = GridPosLats.copy()
- nonGridPosLats[2] = 0.001
- with assert_raises(ValueError) as exc_info:
- Interpolator(nonGridPosLats, GridPosLons)
- assert "x must be strictly increasing" in str(exc_info.value)
- nonGridPosLons = GridPosLons.copy()
- nonGridPosLons[2] = 0.001
- with assert_raises(ValueError) as exc_info:
- Interpolator(GridPosLats, nonGridPosLons)
- assert "y must be strictly increasing" in str(exc_info.value)
- class TestRectSphereBivariateSpline:
- def test_defaults(self):
- y = linspace(0.01, 2*pi-0.01, 7)
- x = linspace(0.01, pi-0.01, 7)
- z = array([[1,2,1,2,1,2,1],[1,2,1,2,1,2,1],[1,2,3,2,1,2,1],
- [1,2,2,2,1,2,1],[1,2,1,2,1,2,1],[1,2,2,2,1,2,1],
- [1,2,1,2,1,2,1]])
- lut = RectSphereBivariateSpline(x,y,z)
- assert_array_almost_equal(lut(x,y),z)
- def test_evaluate(self):
- y = linspace(0.01, 2*pi-0.01, 7)
- x = linspace(0.01, pi-0.01, 7)
- z = array([[1,2,1,2,1,2,1],[1,2,1,2,1,2,1],[1,2,3,2,1,2,1],
- [1,2,2,2,1,2,1],[1,2,1,2,1,2,1],[1,2,2,2,1,2,1],
- [1,2,1,2,1,2,1]])
- lut = RectSphereBivariateSpline(x,y,z)
- yi = [0.2, 1, 2.3, 2.35, 3.0, 3.99, 5.25]
- xi = [1.5, 0.4, 1.1, 0.45, 0.2345, 1., 0.0001]
- zi = lut.ev(xi, yi)
- zi2 = array([lut(xp, yp)[0,0] for xp, yp in zip(xi, yi)])
- assert_almost_equal(zi, zi2)
- def test_invalid_input(self):
- data = np.dot(np.atleast_2d(90. - np.linspace(-80., 80., 18)).T,
- np.atleast_2d(180. - np.abs(np.linspace(0., 350., 9)))).T
- with assert_raises(ValueError) as exc_info:
- lats = np.linspace(-1, 170, 9) * np.pi / 180.
- lons = np.linspace(0, 350, 18) * np.pi / 180.
- RectSphereBivariateSpline(lats, lons, data)
- assert "u should be between (0, pi)" in str(exc_info.value)
- with assert_raises(ValueError) as exc_info:
- lats = np.linspace(10, 181, 9) * np.pi / 180.
- lons = np.linspace(0, 350, 18) * np.pi / 180.
- RectSphereBivariateSpline(lats, lons, data)
- assert "u should be between (0, pi)" in str(exc_info.value)
- with assert_raises(ValueError) as exc_info:
- lats = np.linspace(10, 170, 9) * np.pi / 180.
- lons = np.linspace(-181, 10, 18) * np.pi / 180.
- RectSphereBivariateSpline(lats, lons, data)
- assert "v[0] should be between [-pi, pi)" in str(exc_info.value)
- with assert_raises(ValueError) as exc_info:
- lats = np.linspace(10, 170, 9) * np.pi / 180.
- lons = np.linspace(-10, 360, 18) * np.pi / 180.
- RectSphereBivariateSpline(lats, lons, data)
- assert "v[-1] should be v[0] + 2pi or less" in str(exc_info.value)
- with assert_raises(ValueError) as exc_info:
- lats = np.linspace(10, 170, 9) * np.pi / 180.
- lons = np.linspace(10, 350, 18) * np.pi / 180.
- RectSphereBivariateSpline(lats, lons, data, s=-1)
- assert "s should be positive" in str(exc_info.value)
- def test_derivatives_grid(self):
- y = linspace(0.01, 2*pi-0.01, 7)
- x = linspace(0.01, pi-0.01, 7)
- z = array([[1,2,1,2,1,2,1],[1,2,1,2,1,2,1],[1,2,3,2,1,2,1],
- [1,2,2,2,1,2,1],[1,2,1,2,1,2,1],[1,2,2,2,1,2,1],
- [1,2,1,2,1,2,1]])
- lut = RectSphereBivariateSpline(x,y,z)
- y = linspace(0.02, 2*pi-0.02, 7)
- x = linspace(0.02, pi-0.02, 7)
- assert_allclose(lut(x, y, dtheta=1), _numdiff_2d(lut, x, y, dx=1),
- rtol=1e-4, atol=1e-4)
- assert_allclose(lut(x, y, dphi=1), _numdiff_2d(lut, x, y, dy=1),
- rtol=1e-4, atol=1e-4)
- assert_allclose(lut(x, y, dtheta=1, dphi=1), _numdiff_2d(lut, x, y, dx=1, dy=1, eps=1e-6),
- rtol=1e-3, atol=1e-3)
- assert_array_equal(lut(x, y, dtheta=1),
- lut.partial_derivative(1, 0)(x, y))
- assert_array_equal(lut(x, y, dphi=1),
- lut.partial_derivative(0, 1)(x, y))
- assert_array_equal(lut(x, y, dtheta=1, dphi=1),
- lut.partial_derivative(1, 1)(x, y))
- assert_array_equal(lut(x, y, dtheta=1, grid=False),
- lut.partial_derivative(1, 0)(x, y, grid=False))
- assert_array_equal(lut(x, y, dphi=1, grid=False),
- lut.partial_derivative(0, 1)(x, y, grid=False))
- assert_array_equal(lut(x, y, dtheta=1, dphi=1, grid=False),
- lut.partial_derivative(1, 1)(x, y, grid=False))
- def test_derivatives(self):
- y = linspace(0.01, 2*pi-0.01, 7)
- x = linspace(0.01, pi-0.01, 7)
- z = array([[1,2,1,2,1,2,1],[1,2,1,2,1,2,1],[1,2,3,2,1,2,1],
- [1,2,2,2,1,2,1],[1,2,1,2,1,2,1],[1,2,2,2,1,2,1],
- [1,2,1,2,1,2,1]])
- lut = RectSphereBivariateSpline(x,y,z)
- y = linspace(0.02, 2*pi-0.02, 7)
- x = linspace(0.02, pi-0.02, 7)
- assert_equal(lut(x, y, dtheta=1, grid=False).shape, x.shape)
- assert_allclose(lut(x, y, dtheta=1, grid=False),
- _numdiff_2d(lambda x,y: lut(x,y,grid=False), x, y, dx=1),
- rtol=1e-4, atol=1e-4)
- assert_allclose(lut(x, y, dphi=1, grid=False),
- _numdiff_2d(lambda x,y: lut(x,y,grid=False), x, y, dy=1),
- rtol=1e-4, atol=1e-4)
- assert_allclose(lut(x, y, dtheta=1, dphi=1, grid=False),
- _numdiff_2d(lambda x,y: lut(x,y,grid=False), x, y, dx=1, dy=1, eps=1e-6),
- rtol=1e-3, atol=1e-3)
- def test_invalid_input_2(self):
- data = np.dot(np.atleast_2d(90. - np.linspace(-80., 80., 18)).T,
- np.atleast_2d(180. - np.abs(np.linspace(0., 350., 9)))).T
- with assert_raises(ValueError) as exc_info:
- lats = np.linspace(0, 170, 9) * np.pi / 180.
- lons = np.linspace(0, 350, 18) * np.pi / 180.
- RectSphereBivariateSpline(lats, lons, data)
- assert "u should be between (0, pi)" in str(exc_info.value)
- with assert_raises(ValueError) as exc_info:
- lats = np.linspace(10, 180, 9) * np.pi / 180.
- lons = np.linspace(0, 350, 18) * np.pi / 180.
- RectSphereBivariateSpline(lats, lons, data)
- assert "u should be between (0, pi)" in str(exc_info.value)
- with assert_raises(ValueError) as exc_info:
- lats = np.linspace(10, 170, 9) * np.pi / 180.
- lons = np.linspace(-181, 10, 18) * np.pi / 180.
- RectSphereBivariateSpline(lats, lons, data)
- assert "v[0] should be between [-pi, pi)" in str(exc_info.value)
- with assert_raises(ValueError) as exc_info:
- lats = np.linspace(10, 170, 9) * np.pi / 180.
- lons = np.linspace(-10, 360, 18) * np.pi / 180.
- RectSphereBivariateSpline(lats, lons, data)
- assert "v[-1] should be v[0] + 2pi or less" in str(exc_info.value)
- with assert_raises(ValueError) as exc_info:
- lats = np.linspace(10, 170, 9) * np.pi / 180.
- lons = np.linspace(10, 350, 18) * np.pi / 180.
- RectSphereBivariateSpline(lats, lons, data, s=-1)
- assert "s should be positive" in str(exc_info.value)
- def test_array_like_input(self):
- y = linspace(0.01, 2 * pi - 0.01, 7)
- x = linspace(0.01, pi - 0.01, 7)
- z = array([[1, 2, 1, 2, 1, 2, 1], [1, 2, 1, 2, 1, 2, 1],
- [1, 2, 3, 2, 1, 2, 1],
- [1, 2, 2, 2, 1, 2, 1], [1, 2, 1, 2, 1, 2, 1],
- [1, 2, 2, 2, 1, 2, 1],
- [1, 2, 1, 2, 1, 2, 1]])
- # np.array input
- spl1 = RectSphereBivariateSpline(x, y, z)
- # list input
- spl2 = RectSphereBivariateSpline(x.tolist(), y.tolist(), z.tolist())
- assert_array_almost_equal(spl1(x, y), spl2(x, y))
- def test_negative_evaluation(self):
- lats = np.array([25, 30, 35, 40, 45])
- lons = np.array([-90, -85, -80, -75, 70])
- mesh = np.meshgrid(lats, lons)
- data = mesh[0] + mesh[1] # lon + lat value
- lat_r = np.radians(lats)
- lon_r = np.radians(lons)
- interpolator = RectSphereBivariateSpline(lat_r, lon_r, data)
- query_lat = np.radians(np.array([35, 37.5]))
- query_lon = np.radians(np.array([-80, -77.5]))
- data_interp = interpolator(query_lat, query_lon)
- ans = np.array([[-45.0, -42.480862],
- [-49.0625, -46.54315]])
- assert_array_almost_equal(data_interp, ans)
- def test_pole_continuity_gh_14591(self):
- # regression test for https://github.com/scipy/scipy/issues/14591
- # with pole_continuty=(True, True), the internal work array size
- # was too small, leading to a FITPACK data validation error.
- # The reproducer in gh-14591 was using a NetCDF4 file with
- # 361x507 arrays, so here we trivialize array sizes to a minimum
- # which still demonstrates the issue.
- u = np.arange(1, 10) * np.pi / 10
- v = np.arange(1, 10) * np.pi / 10
- r = np.zeros((9, 9))
- for p in [(True, True), (True, False), (False, False)]:
- RectSphereBivariateSpline(u, v, r, s=0, pole_continuity=p)
- def _numdiff_2d(func, x, y, dx=0, dy=0, eps=1e-8):
- if dx == 0 and dy == 0:
- return func(x, y)
- elif dx == 1 and dy == 0:
- return (func(x + eps, y) - func(x - eps, y)) / (2*eps)
- elif dx == 0 and dy == 1:
- return (func(x, y + eps) - func(x, y - eps)) / (2*eps)
- elif dx == 1 and dy == 1:
- return (func(x + eps, y + eps) - func(x - eps, y + eps)
- - func(x + eps, y - eps) + func(x - eps, y - eps)) / (2*eps)**2
- else:
- raise ValueError("invalid derivative order")
- class Test_DerivedBivariateSpline(object):
- """Test the creation, usage, and attribute access of the (private)
- _DerivedBivariateSpline class.
- """
- def setup_method(self):
- x = np.concatenate(list(zip(range(10), range(10))))
- y = np.concatenate(list(zip(range(10), range(1, 11))))
- z = np.concatenate((np.linspace(3, 1, 10), np.linspace(1, 3, 10)))
- with suppress_warnings() as sup:
- sup.record(UserWarning, "\nThe coefficients of the spline")
- self.lut_lsq = LSQBivariateSpline(x, y, z,
- linspace(0.5, 19.5, 4),
- linspace(1.5, 20.5, 4),
- eps=1e-2)
- self.lut_smooth = SmoothBivariateSpline(x, y, z)
- xx = linspace(0, 1, 20)
- yy = xx + 1.0
- zz = array([np.roll(z, i) for i in range(z.size)])
- self.lut_rect = RectBivariateSpline(xx, yy, zz)
- self.orders = list(itertools.product(range(3), range(3)))
- def test_creation_from_LSQ(self):
- for nux, nuy in self.orders:
- lut_der = self.lut_lsq.partial_derivative(nux, nuy)
- a = lut_der(3.5, 3.5, grid=False)
- b = self.lut_lsq(3.5, 3.5, dx=nux, dy=nuy, grid=False)
- assert_equal(a, b)
- def test_creation_from_Smooth(self):
- for nux, nuy in self.orders:
- lut_der = self.lut_smooth.partial_derivative(nux, nuy)
- a = lut_der(5.5, 5.5, grid=False)
- b = self.lut_smooth(5.5, 5.5, dx=nux, dy=nuy, grid=False)
- assert_equal(a, b)
- def test_creation_from_Rect(self):
- for nux, nuy in self.orders:
- lut_der = self.lut_rect.partial_derivative(nux, nuy)
- a = lut_der(0.5, 1.5, grid=False)
- b = self.lut_rect(0.5, 1.5, dx=nux, dy=nuy, grid=False)
- assert_equal(a, b)
- def test_invalid_attribute_fp(self):
- der = self.lut_rect.partial_derivative(1, 1)
- with assert_raises(AttributeError):
- der.fp
- def test_invalid_attribute_get_residual(self):
- der = self.lut_smooth.partial_derivative(1, 1)
- with assert_raises(AttributeError):
- der.get_residual()
|