123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743 |
- import warnings
- import numpy as np
- from scipy.special import factorial
- from scipy._lib._util import _asarray_validated, float_factorial
- __all__ = ["KroghInterpolator", "krogh_interpolate", "BarycentricInterpolator",
- "barycentric_interpolate", "approximate_taylor_polynomial"]
- def _isscalar(x):
- """Check whether x is if a scalar type, or 0-dim"""
- return np.isscalar(x) or hasattr(x, 'shape') and x.shape == ()
- class _Interpolator1D:
- """
- Common features in univariate interpolation
- Deal with input data type and interpolation axis rolling. The
- actual interpolator can assume the y-data is of shape (n, r) where
- `n` is the number of x-points, and `r` the number of variables,
- and use self.dtype as the y-data type.
- Attributes
- ----------
- _y_axis
- Axis along which the interpolation goes in the original array
- _y_extra_shape
- Additional trailing shape of the input arrays, excluding
- the interpolation axis.
- dtype
- Dtype of the y-data arrays. Can be set via _set_dtype, which
- forces it to be float or complex.
- Methods
- -------
- __call__
- _prepare_x
- _finish_y
- _reshape_yi
- _set_yi
- _set_dtype
- _evaluate
- """
- __slots__ = ('_y_axis', '_y_extra_shape', 'dtype')
- def __init__(self, xi=None, yi=None, axis=None):
- self._y_axis = axis
- self._y_extra_shape = None
- self.dtype = None
- if yi is not None:
- self._set_yi(yi, xi=xi, axis=axis)
- def __call__(self, x):
- """
- Evaluate the interpolant
- Parameters
- ----------
- x : array_like
- Points to evaluate the interpolant at.
- Returns
- -------
- y : array_like
- Interpolated values. Shape is determined by replacing
- the interpolation axis in the original array with the shape of x.
- Notes
- -----
- Input values `x` must be convertible to `float` values like `int`
- or `float`.
- """
- x, x_shape = self._prepare_x(x)
- y = self._evaluate(x)
- return self._finish_y(y, x_shape)
- def _evaluate(self, x):
- """
- Actually evaluate the value of the interpolator.
- """
- raise NotImplementedError()
- def _prepare_x(self, x):
- """Reshape input x array to 1-D"""
- x = _asarray_validated(x, check_finite=False, as_inexact=True)
- x_shape = x.shape
- return x.ravel(), x_shape
- def _finish_y(self, y, x_shape):
- """Reshape interpolated y back to an N-D array similar to initial y"""
- y = y.reshape(x_shape + self._y_extra_shape)
- if self._y_axis != 0 and x_shape != ():
- nx = len(x_shape)
- ny = len(self._y_extra_shape)
- s = (list(range(nx, nx + self._y_axis))
- + list(range(nx)) + list(range(nx+self._y_axis, nx+ny)))
- y = y.transpose(s)
- return y
- def _reshape_yi(self, yi, check=False):
- yi = np.moveaxis(np.asarray(yi), self._y_axis, 0)
- if check and yi.shape[1:] != self._y_extra_shape:
- ok_shape = "%r + (N,) + %r" % (self._y_extra_shape[-self._y_axis:],
- self._y_extra_shape[:-self._y_axis])
- raise ValueError("Data must be of shape %s" % ok_shape)
- return yi.reshape((yi.shape[0], -1))
- def _set_yi(self, yi, xi=None, axis=None):
- if axis is None:
- axis = self._y_axis
- if axis is None:
- raise ValueError("no interpolation axis specified")
- yi = np.asarray(yi)
- shape = yi.shape
- if shape == ():
- shape = (1,)
- if xi is not None and shape[axis] != len(xi):
- raise ValueError("x and y arrays must be equal in length along "
- "interpolation axis.")
- self._y_axis = (axis % yi.ndim)
- self._y_extra_shape = yi.shape[:self._y_axis]+yi.shape[self._y_axis+1:]
- self.dtype = None
- self._set_dtype(yi.dtype)
- def _set_dtype(self, dtype, union=False):
- if np.issubdtype(dtype, np.complexfloating) \
- or np.issubdtype(self.dtype, np.complexfloating):
- self.dtype = np.complex_
- else:
- if not union or self.dtype != np.complex_:
- self.dtype = np.float_
- class _Interpolator1DWithDerivatives(_Interpolator1D):
- def derivatives(self, x, der=None):
- """
- Evaluate many derivatives of the polynomial at the point x
- Produce an array of all derivative values at the point x.
- Parameters
- ----------
- x : array_like
- Point or points at which to evaluate the derivatives
- der : int or None, optional
- How many derivatives to extract; None for all potentially
- nonzero derivatives (that is a number equal to the number
- of points). This number includes the function value as 0th
- derivative.
- Returns
- -------
- d : ndarray
- Array with derivatives; d[j] contains the jth derivative.
- Shape of d[j] is determined by replacing the interpolation
- axis in the original array with the shape of x.
- Examples
- --------
- >>> from scipy.interpolate import KroghInterpolator
- >>> KroghInterpolator([0,0,0],[1,2,3]).derivatives(0)
- array([1.0,2.0,3.0])
- >>> KroghInterpolator([0,0,0],[1,2,3]).derivatives([0,0])
- array([[1.0,1.0],
- [2.0,2.0],
- [3.0,3.0]])
- """
- x, x_shape = self._prepare_x(x)
- y = self._evaluate_derivatives(x, der)
- y = y.reshape((y.shape[0],) + x_shape + self._y_extra_shape)
- if self._y_axis != 0 and x_shape != ():
- nx = len(x_shape)
- ny = len(self._y_extra_shape)
- s = ([0] + list(range(nx+1, nx + self._y_axis+1))
- + list(range(1, nx+1)) +
- list(range(nx+1+self._y_axis, nx+ny+1)))
- y = y.transpose(s)
- return y
- def derivative(self, x, der=1):
- """
- Evaluate one derivative of the polynomial at the point x
- Parameters
- ----------
- x : array_like
- Point or points at which to evaluate the derivatives
- der : integer, optional
- Which derivative to extract. This number includes the
- function value as 0th derivative.
- Returns
- -------
- d : ndarray
- Derivative interpolated at the x-points. Shape of d is
- determined by replacing the interpolation axis in the
- original array with the shape of x.
- Notes
- -----
- This is computed by evaluating all derivatives up to the desired
- one (using self.derivatives()) and then discarding the rest.
- """
- x, x_shape = self._prepare_x(x)
- y = self._evaluate_derivatives(x, der+1)
- return self._finish_y(y[der], x_shape)
- class KroghInterpolator(_Interpolator1DWithDerivatives):
- """
- Interpolating polynomial for a set of points.
- The polynomial passes through all the pairs (xi,yi). One may
- additionally specify a number of derivatives at each point xi;
- this is done by repeating the value xi and specifying the
- derivatives as successive yi values.
- Allows evaluation of the polynomial and all its derivatives.
- For reasons of numerical stability, this function does not compute
- the coefficients of the polynomial, although they can be obtained
- by evaluating all the derivatives.
- Parameters
- ----------
- xi : array_like, length N
- Known x-coordinates. Must be sorted in increasing order.
- yi : array_like
- Known y-coordinates. When an xi occurs two or more times in
- a row, the corresponding yi's represent derivative values.
- axis : int, optional
- Axis in the yi array corresponding to the x-coordinate values.
- Notes
- -----
- Be aware that the algorithms implemented here are not necessarily
- the most numerically stable known. Moreover, even in a world of
- exact computation, unless the x coordinates are chosen very
- carefully - Chebyshev zeros (e.g., cos(i*pi/n)) are a good choice -
- polynomial interpolation itself is a very ill-conditioned process
- due to the Runge phenomenon. In general, even with well-chosen
- x values, degrees higher than about thirty cause problems with
- numerical instability in this code.
- Based on [1]_.
- References
- ----------
- .. [1] Krogh, "Efficient Algorithms for Polynomial Interpolation
- and Numerical Differentiation", 1970.
- Examples
- --------
- To produce a polynomial that is zero at 0 and 1 and has
- derivative 2 at 0, call
- >>> from scipy.interpolate import KroghInterpolator
- >>> KroghInterpolator([0,0,1],[0,2,0])
- This constructs the quadratic 2*X**2-2*X. The derivative condition
- is indicated by the repeated zero in the xi array; the corresponding
- yi values are 0, the function value, and 2, the derivative value.
- For another example, given xi, yi, and a derivative ypi for each
- point, appropriate arrays can be constructed as:
- >>> import numpy as np
- >>> rng = np.random.default_rng()
- >>> xi = np.linspace(0, 1, 5)
- >>> yi, ypi = rng.random((2, 5))
- >>> xi_k, yi_k = np.repeat(xi, 2), np.ravel(np.dstack((yi,ypi)))
- >>> KroghInterpolator(xi_k, yi_k)
- To produce a vector-valued polynomial, supply a higher-dimensional
- array for yi:
- >>> KroghInterpolator([0,1],[[2,3],[4,5]])
- This constructs a linear polynomial giving (2,3) at 0 and (4,5) at 1.
- """
- def __init__(self, xi, yi, axis=0):
- _Interpolator1DWithDerivatives.__init__(self, xi, yi, axis)
- self.xi = np.asarray(xi)
- self.yi = self._reshape_yi(yi)
- self.n, self.r = self.yi.shape
- if (deg := self.xi.size) > 30:
- warnings.warn(f"{deg} degrees provided, degrees higher than about"
- " thirty cause problems with numerical instability "
- "with 'KroghInterpolator'", stacklevel=2)
- c = np.zeros((self.n+1, self.r), dtype=self.dtype)
- c[0] = self.yi[0]
- Vk = np.zeros((self.n, self.r), dtype=self.dtype)
- for k in range(1, self.n):
- s = 0
- while s <= k and xi[k-s] == xi[k]:
- s += 1
- s -= 1
- Vk[0] = self.yi[k]/float_factorial(s)
- for i in range(k-s):
- if xi[i] == xi[k]:
- raise ValueError("Elements if `xi` can't be equal.")
- if s == 0:
- Vk[i+1] = (c[i]-Vk[i])/(xi[i]-xi[k])
- else:
- Vk[i+1] = (Vk[i+1]-Vk[i])/(xi[i]-xi[k])
- c[k] = Vk[k-s]
- self.c = c
- def _evaluate(self, x):
- pi = 1
- p = np.zeros((len(x), self.r), dtype=self.dtype)
- p += self.c[0,np.newaxis,:]
- for k in range(1, self.n):
- w = x - self.xi[k-1]
- pi = w*pi
- p += pi[:,np.newaxis] * self.c[k]
- return p
- def _evaluate_derivatives(self, x, der=None):
- n = self.n
- r = self.r
- if der is None:
- der = self.n
- pi = np.zeros((n, len(x)))
- w = np.zeros((n, len(x)))
- pi[0] = 1
- p = np.zeros((len(x), self.r), dtype=self.dtype)
- p += self.c[0, np.newaxis, :]
- for k in range(1, n):
- w[k-1] = x - self.xi[k-1]
- pi[k] = w[k-1] * pi[k-1]
- p += pi[k, :, np.newaxis] * self.c[k]
- cn = np.zeros((max(der, n+1), len(x), r), dtype=self.dtype)
- cn[:n+1, :, :] += self.c[:n+1, np.newaxis, :]
- cn[0] = p
- for k in range(1, n):
- for i in range(1, n-k+1):
- pi[i] = w[k+i-1]*pi[i-1] + pi[i]
- cn[k] = cn[k] + pi[i, :, np.newaxis]*cn[k+i]
- cn[k] *= float_factorial(k)
- cn[n, :, :] = 0
- return cn[:der]
- def krogh_interpolate(xi, yi, x, der=0, axis=0):
- """
- Convenience function for polynomial interpolation.
- See `KroghInterpolator` for more details.
- Parameters
- ----------
- xi : array_like
- Known x-coordinates.
- yi : array_like
- Known y-coordinates, of shape ``(xi.size, R)``. Interpreted as
- vectors of length R, or scalars if R=1.
- x : array_like
- Point or points at which to evaluate the derivatives.
- der : int or list, optional
- How many derivatives to extract; None for all potentially
- nonzero derivatives (that is a number equal to the number
- of points), or a list of derivatives to extract. This number
- includes the function value as 0th derivative.
- axis : int, optional
- Axis in the yi array corresponding to the x-coordinate values.
- Returns
- -------
- d : ndarray
- If the interpolator's values are R-D then the
- returned array will be the number of derivatives by N by R.
- If `x` is a scalar, the middle dimension will be dropped; if
- the `yi` are scalars then the last dimension will be dropped.
- See Also
- --------
- KroghInterpolator : Krogh interpolator
- Notes
- -----
- Construction of the interpolating polynomial is a relatively expensive
- process. If you want to evaluate it repeatedly consider using the class
- KroghInterpolator (which is what this function uses).
- Examples
- --------
- We can interpolate 2D observed data using krogh interpolation:
- >>> import numpy as np
- >>> import matplotlib.pyplot as plt
- >>> from scipy.interpolate import krogh_interpolate
- >>> x_observed = np.linspace(0.0, 10.0, 11)
- >>> y_observed = np.sin(x_observed)
- >>> x = np.linspace(min(x_observed), max(x_observed), num=100)
- >>> y = krogh_interpolate(x_observed, y_observed, x)
- >>> plt.plot(x_observed, y_observed, "o", label="observation")
- >>> plt.plot(x, y, label="krogh interpolation")
- >>> plt.legend()
- >>> plt.show()
- """
- P = KroghInterpolator(xi, yi, axis=axis)
- if der == 0:
- return P(x)
- elif _isscalar(der):
- return P.derivative(x,der=der)
- else:
- return P.derivatives(x,der=np.amax(der)+1)[der]
- def approximate_taylor_polynomial(f,x,degree,scale,order=None):
- """
- Estimate the Taylor polynomial of f at x by polynomial fitting.
- Parameters
- ----------
- f : callable
- The function whose Taylor polynomial is sought. Should accept
- a vector of `x` values.
- x : scalar
- The point at which the polynomial is to be evaluated.
- degree : int
- The degree of the Taylor polynomial
- scale : scalar
- The width of the interval to use to evaluate the Taylor polynomial.
- Function values spread over a range this wide are used to fit the
- polynomial. Must be chosen carefully.
- order : int or None, optional
- The order of the polynomial to be used in the fitting; `f` will be
- evaluated ``order+1`` times. If None, use `degree`.
- Returns
- -------
- p : poly1d instance
- The Taylor polynomial (translated to the origin, so that
- for example p(0)=f(x)).
- Notes
- -----
- The appropriate choice of "scale" is a trade-off; too large and the
- function differs from its Taylor polynomial too much to get a good
- answer, too small and round-off errors overwhelm the higher-order terms.
- The algorithm used becomes numerically unstable around order 30 even
- under ideal circumstances.
- Choosing order somewhat larger than degree may improve the higher-order
- terms.
- Examples
- --------
- We can calculate Taylor approximation polynomials of sin function with
- various degrees:
- >>> import numpy as np
- >>> import matplotlib.pyplot as plt
- >>> from scipy.interpolate import approximate_taylor_polynomial
- >>> x = np.linspace(-10.0, 10.0, num=100)
- >>> plt.plot(x, np.sin(x), label="sin curve")
- >>> for degree in np.arange(1, 15, step=2):
- ... sin_taylor = approximate_taylor_polynomial(np.sin, 0, degree, 1,
- ... order=degree + 2)
- ... plt.plot(x, sin_taylor(x), label=f"degree={degree}")
- >>> plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left',
- ... borderaxespad=0.0, shadow=True)
- >>> plt.tight_layout()
- >>> plt.axis([-10, 10, -10, 10])
- >>> plt.show()
- """
- if order is None:
- order = degree
- n = order+1
- # Choose n points that cluster near the endpoints of the interval in
- # a way that avoids the Runge phenomenon. Ensure, by including the
- # endpoint or not as appropriate, that one point always falls at x
- # exactly.
- xs = scale*np.cos(np.linspace(0,np.pi,n,endpoint=n % 1)) + x
- P = KroghInterpolator(xs, f(xs))
- d = P.derivatives(x,der=degree+1)
- return np.poly1d((d/factorial(np.arange(degree+1)))[::-1])
- class BarycentricInterpolator(_Interpolator1D):
- """The interpolating polynomial for a set of points
- Constructs a polynomial that passes through a given set of points.
- Allows evaluation of the polynomial, efficient changing of the y
- values to be interpolated, and updating by adding more x values.
- For reasons of numerical stability, this function does not compute
- the coefficients of the polynomial.
- The values yi need to be provided before the function is
- evaluated, but none of the preprocessing depends on them, so rapid
- updates are possible.
- Parameters
- ----------
- xi : array_like
- 1-D array of x coordinates of the points the polynomial
- should pass through
- yi : array_like, optional
- The y coordinates of the points the polynomial should pass through.
- If None, the y values will be supplied later via the `set_y` method.
- axis : int, optional
- Axis in the yi array corresponding to the x-coordinate values.
- Notes
- -----
- This class uses a "barycentric interpolation" method that treats
- the problem as a special case of rational function interpolation.
- This algorithm is quite stable, numerically, but even in a world of
- exact computation, unless the x coordinates are chosen very
- carefully - Chebyshev zeros (e.g., cos(i*pi/n)) are a good choice -
- polynomial interpolation itself is a very ill-conditioned process
- due to the Runge phenomenon.
- Based on Berrut and Trefethen 2004, "Barycentric Lagrange Interpolation".
- """
- def __init__(self, xi, yi=None, axis=0):
- _Interpolator1D.__init__(self, xi, yi, axis)
- self.xi = np.asfarray(xi)
- self.set_yi(yi)
- self.n = len(self.xi)
- # See page 510 of Berrut and Trefethen 2004 for an explanation of the
- # capacity scaling and the suggestion of using a random permutation of
- # the input factors.
- # At the moment, the permutation is not performed for xi that are
- # appended later through the add_xi interface. It's not clear to me how
- # to implement that and it seems that most situations that require
- # these numerical stability improvements will be able to provide all
- # the points to the constructor.
- self._inv_capacity = 4.0 / (np.max(self.xi) - np.min(self.xi))
- permute = np.random.permutation(self.n)
- inv_permute = np.zeros(self.n, dtype=np.int32)
- inv_permute[permute] = np.arange(self.n)
- self.wi = np.zeros(self.n)
- for i in range(self.n):
- dist = self._inv_capacity * (self.xi[i] - self.xi[permute])
- dist[inv_permute[i]] = 1.0
- self.wi[i] = 1.0 / np.prod(dist)
- def set_yi(self, yi, axis=None):
- """
- Update the y values to be interpolated
- The barycentric interpolation algorithm requires the calculation
- of weights, but these depend only on the xi. The yi can be changed
- at any time.
- Parameters
- ----------
- yi : array_like
- The y coordinates of the points the polynomial should pass through.
- If None, the y values will be supplied later.
- axis : int, optional
- Axis in the yi array corresponding to the x-coordinate values.
- """
- if yi is None:
- self.yi = None
- return
- self._set_yi(yi, xi=self.xi, axis=axis)
- self.yi = self._reshape_yi(yi)
- self.n, self.r = self.yi.shape
- def add_xi(self, xi, yi=None):
- """
- Add more x values to the set to be interpolated
- The barycentric interpolation algorithm allows easy updating by
- adding more points for the polynomial to pass through.
- Parameters
- ----------
- xi : array_like
- The x coordinates of the points that the polynomial should pass
- through.
- yi : array_like, optional
- The y coordinates of the points the polynomial should pass through.
- Should have shape ``(xi.size, R)``; if R > 1 then the polynomial is
- vector-valued.
- If `yi` is not given, the y values will be supplied later. `yi`
- should be given if and only if the interpolator has y values
- specified.
- """
- if yi is not None:
- if self.yi is None:
- raise ValueError("No previous yi value to update!")
- yi = self._reshape_yi(yi, check=True)
- self.yi = np.vstack((self.yi,yi))
- else:
- if self.yi is not None:
- raise ValueError("No update to yi provided!")
- old_n = self.n
- self.xi = np.concatenate((self.xi,xi))
- self.n = len(self.xi)
- self.wi **= -1
- old_wi = self.wi
- self.wi = np.zeros(self.n)
- self.wi[:old_n] = old_wi
- for j in range(old_n, self.n):
- self.wi[:j] *= self._inv_capacity * (self.xi[j]-self.xi[:j])
- self.wi[j] = np.multiply.reduce(
- self._inv_capacity * (self.xi[:j]-self.xi[j])
- )
- self.wi **= -1
- def __call__(self, x):
- """Evaluate the interpolating polynomial at the points x
- Parameters
- ----------
- x : array_like
- Points to evaluate the interpolant at.
- Returns
- -------
- y : array_like
- Interpolated values. Shape is determined by replacing
- the interpolation axis in the original array with the shape of x.
- Notes
- -----
- Currently the code computes an outer product between x and the
- weights, that is, it constructs an intermediate array of size
- N by len(x), where N is the degree of the polynomial.
- """
- return _Interpolator1D.__call__(self, x)
- def _evaluate(self, x):
- if x.size == 0:
- p = np.zeros((0, self.r), dtype=self.dtype)
- else:
- c = x[..., np.newaxis] - self.xi
- z = c == 0
- c[z] = 1
- c = self.wi/c
- with np.errstate(divide='ignore'):
- p = np.dot(c, self.yi) / np.sum(c, axis=-1)[..., np.newaxis]
- # Now fix where x==some xi
- r = np.nonzero(z)
- if len(r) == 1: # evaluation at a scalar
- if len(r[0]) > 0: # equals one of the points
- p = self.yi[r[0][0]]
- else:
- p[r[:-1]] = self.yi[r[-1]]
- return p
- def barycentric_interpolate(xi, yi, x, axis=0):
- """
- Convenience function for polynomial interpolation.
- Constructs a polynomial that passes through a given set of points,
- then evaluates the polynomial. For reasons of numerical stability,
- this function does not compute the coefficients of the polynomial.
- This function uses a "barycentric interpolation" method that treats
- the problem as a special case of rational function interpolation.
- This algorithm is quite stable, numerically, but even in a world of
- exact computation, unless the `x` coordinates are chosen very
- carefully - Chebyshev zeros (e.g., cos(i*pi/n)) are a good choice -
- polynomial interpolation itself is a very ill-conditioned process
- due to the Runge phenomenon.
- Parameters
- ----------
- xi : array_like
- 1-D array of x coordinates of the points the polynomial should
- pass through
- yi : array_like
- The y coordinates of the points the polynomial should pass through.
- x : scalar or array_like
- Points to evaluate the interpolator at.
- axis : int, optional
- Axis in the yi array corresponding to the x-coordinate values.
- Returns
- -------
- y : scalar or array_like
- Interpolated values. Shape is determined by replacing
- the interpolation axis in the original array with the shape of x.
- See Also
- --------
- BarycentricInterpolator : Bary centric interpolator
- Notes
- -----
- Construction of the interpolation weights is a relatively slow process.
- If you want to call this many times with the same xi (but possibly
- varying yi or x) you should use the class `BarycentricInterpolator`.
- This is what this function uses internally.
- Examples
- --------
- We can interpolate 2D observed data using barycentric interpolation:
- >>> import numpy as np
- >>> import matplotlib.pyplot as plt
- >>> from scipy.interpolate import barycentric_interpolate
- >>> x_observed = np.linspace(0.0, 10.0, 11)
- >>> y_observed = np.sin(x_observed)
- >>> x = np.linspace(min(x_observed), max(x_observed), num=100)
- >>> y = barycentric_interpolate(x_observed, y_observed, x)
- >>> plt.plot(x_observed, y_observed, "o", label="observation")
- >>> plt.plot(x, y, label="barycentric interpolation")
- >>> plt.legend()
- >>> plt.show()
- """
- return BarycentricInterpolator(xi, yi, axis=axis)(x)
|