12345678910111213141516171819202122232425262728293031323334353637 |
- """
- Here we perform some symbolic computations required for the N-D
- interpolation routines in `interpnd.pyx`.
- """
- from sympy import symbols, binomial, Matrix
- def _estimate_gradients_2d_global():
- #
- # Compute
- #
- #
- f1, f2, df1, df2, x = symbols(['f1', 'f2', 'df1', 'df2', 'x'])
- c = [f1, (df1 + 3*f1)/3, (df2 + 3*f2)/3, f2]
- w = 0
- for k in range(4):
- w += binomial(3, k) * c[k] * x**k*(1-x)**(3-k)
- wpp = w.diff(x, 2).expand()
- intwpp2 = (wpp**2).integrate((x, 0, 1)).expand()
- A = Matrix([[intwpp2.coeff(df1**2), intwpp2.coeff(df1*df2)/2],
- [intwpp2.coeff(df1*df2)/2, intwpp2.coeff(df2**2)]])
- B = Matrix([[intwpp2.coeff(df1).subs(df2, 0)],
- [intwpp2.coeff(df2).subs(df1, 0)]]) / 2
- print("A")
- print(A)
- print("B")
- print(B)
- print("solution")
- print(A.inv() * B)
|