123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788 |
- __all__ = ['splrep', 'splprep', 'splev', 'splint', 'sproot', 'spalde',
- 'bisplrep', 'bisplev', 'insert', 'splder', 'splantider']
- import numpy as np
- # These are in the API for fitpack even if not used in fitpack.py itself.
- from ._fitpack_impl import bisplrep, bisplev, dblint
- from . import _fitpack_impl as _impl
- from ._bsplines import BSpline
- def splprep(x, w=None, u=None, ub=None, ue=None, k=3, task=0, s=None, t=None,
- full_output=0, nest=None, per=0, quiet=1):
- """
- Find the B-spline representation of an N-D curve.
- Given a list of N rank-1 arrays, `x`, which represent a curve in
- N-D space parametrized by `u`, find a smooth approximating
- spline curve g(`u`). Uses the FORTRAN routine parcur from FITPACK.
- Parameters
- ----------
- x : array_like
- A list of sample vector arrays representing the curve.
- w : array_like, optional
- Strictly positive rank-1 array of weights the same length as `x[0]`.
- The weights are used in computing the weighted least-squares spline
- fit. If the errors in the `x` values have standard-deviation given by
- the vector d, then `w` should be 1/d. Default is ``ones(len(x[0]))``.
- u : array_like, optional
- An array of parameter values. If not given, these values are
- calculated automatically as ``M = len(x[0])``, where
- v[0] = 0
- v[i] = v[i-1] + distance(`x[i]`, `x[i-1]`)
- u[i] = v[i] / v[M-1]
- ub, ue : int, optional
- The end-points of the parameters interval. Defaults to
- u[0] and u[-1].
- k : int, optional
- Degree of the spline. Cubic splines are recommended.
- Even values of `k` should be avoided especially with a small s-value.
- ``1 <= k <= 5``, default is 3.
- task : int, optional
- If task==0 (default), find t and c for a given smoothing factor, s.
- If task==1, find t and c for another value of the smoothing factor, s.
- There must have been a previous call with task=0 or task=1
- for the same set of data.
- If task=-1 find the weighted least square spline for a given set of
- knots, t.
- s : float, optional
- A smoothing condition. The amount of smoothness is determined by
- satisfying the conditions: ``sum((w * (y - g))**2,axis=0) <= s``,
- where g(x) is the smoothed interpolation of (x,y). The user can
- use `s` to control the trade-off between closeness and smoothness
- of fit. Larger `s` means more smoothing while smaller values of `s`
- indicate less smoothing. Recommended values of `s` depend on the
- weights, w. If the weights represent the inverse of the
- standard-deviation of y, then a good `s` value should be found in
- the range ``(m-sqrt(2*m),m+sqrt(2*m))``, where m is the number of
- data points in x, y, and w.
- t : int, optional
- The knots needed for task=-1.
- full_output : int, optional
- If non-zero, then return optional outputs.
- nest : int, optional
- An over-estimate of the total number of knots of the spline to
- help in determining the storage space. By default nest=m/2.
- Always large enough is nest=m+k+1.
- per : int, optional
- If non-zero, data points are considered periodic with period
- ``x[m-1] - x[0]`` and a smooth periodic spline approximation is
- returned. Values of ``y[m-1]`` and ``w[m-1]`` are not used.
- quiet : int, optional
- Non-zero to suppress messages.
- Returns
- -------
- tck : tuple
- (t,c,k) a tuple containing the vector of knots, the B-spline
- coefficients, and the degree of the spline.
- u : array
- An array of the values of the parameter.
- fp : float
- The weighted sum of squared residuals of the spline approximation.
- ier : int
- An integer flag about splrep success. Success is indicated
- if ier<=0. If ier in [1,2,3] an error occurred but was not raised.
- Otherwise an error is raised.
- msg : str
- A message corresponding to the integer flag, ier.
- See Also
- --------
- splrep, splev, sproot, spalde, splint,
- bisplrep, bisplev
- UnivariateSpline, BivariateSpline
- BSpline
- make_interp_spline
- Notes
- -----
- See `splev` for evaluation of the spline and its derivatives.
- The number of dimensions N must be smaller than 11.
- The number of coefficients in the `c` array is ``k+1`` less than the number
- of knots, ``len(t)``. This is in contrast with `splrep`, which zero-pads
- the array of coefficients to have the same length as the array of knots.
- These additional coefficients are ignored by evaluation routines, `splev`
- and `BSpline`.
- References
- ----------
- .. [1] P. Dierckx, "Algorithms for smoothing data with periodic and
- parametric splines, Computer Graphics and Image Processing",
- 20 (1982) 171-184.
- .. [2] P. Dierckx, "Algorithms for smoothing data with periodic and
- parametric splines", report tw55, Dept. Computer Science,
- K.U.Leuven, 1981.
- .. [3] P. Dierckx, "Curve and surface fitting with splines", Monographs on
- Numerical Analysis, Oxford University Press, 1993.
- Examples
- --------
- Generate a discretization of a limacon curve in the polar coordinates:
- >>> import numpy as np
- >>> phi = np.linspace(0, 2.*np.pi, 40)
- >>> r = 0.5 + np.cos(phi) # polar coords
- >>> x, y = r * np.cos(phi), r * np.sin(phi) # convert to cartesian
- And interpolate:
- >>> from scipy.interpolate import splprep, splev
- >>> tck, u = splprep([x, y], s=0)
- >>> new_points = splev(u, tck)
- Notice that (i) we force interpolation by using `s=0`,
- (ii) the parameterization, ``u``, is generated automatically.
- Now plot the result:
- >>> import matplotlib.pyplot as plt
- >>> fig, ax = plt.subplots()
- >>> ax.plot(x, y, 'ro')
- >>> ax.plot(new_points[0], new_points[1], 'r-')
- >>> plt.show()
- """
- res = _impl.splprep(x, w, u, ub, ue, k, task, s, t, full_output, nest, per,
- quiet)
- return res
- def splrep(x, y, w=None, xb=None, xe=None, k=3, task=0, s=None, t=None,
- full_output=0, per=0, quiet=1):
- """
- Find the B-spline representation of a 1-D curve.
- Given the set of data points ``(x[i], y[i])`` determine a smooth spline
- approximation of degree k on the interval ``xb <= x <= xe``.
- Parameters
- ----------
- x, y : array_like
- The data points defining a curve y = f(x).
- w : array_like, optional
- Strictly positive rank-1 array of weights the same length as x and y.
- The weights are used in computing the weighted least-squares spline
- fit. If the errors in the y values have standard-deviation given by the
- vector d, then w should be 1/d. Default is ones(len(x)).
- xb, xe : float, optional
- The interval to fit. If None, these default to x[0] and x[-1]
- respectively.
- k : int, optional
- The degree of the spline fit. It is recommended to use cubic splines.
- Even values of k should be avoided especially with small s values.
- 1 <= k <= 5
- task : {1, 0, -1}, optional
- If task==0 find t and c for a given smoothing factor, s.
- If task==1 find t and c for another value of the smoothing factor, s.
- There must have been a previous call with task=0 or task=1 for the same
- set of data (t will be stored an used internally)
- If task=-1 find the weighted least square spline for a given set of
- knots, t. These should be interior knots as knots on the ends will be
- added automatically.
- s : float, optional
- A smoothing condition. The amount of smoothness is determined by
- satisfying the conditions: sum((w * (y - g))**2,axis=0) <= s where g(x)
- is the smoothed interpolation of (x,y). The user can use s to control
- the tradeoff between closeness and smoothness of fit. Larger s means
- more smoothing while smaller values of s indicate less smoothing.
- Recommended values of s depend on the weights, w. If the weights
- represent the inverse of the standard-deviation of y, then a good s
- value should be found in the range (m-sqrt(2*m),m+sqrt(2*m)) where m is
- the number of datapoints in x, y, and w. default : s=m-sqrt(2*m) if
- weights are supplied. s = 0.0 (interpolating) if no weights are
- supplied.
- t : array_like, optional
- The knots needed for task=-1. If given then task is automatically set
- to -1.
- full_output : bool, optional
- If non-zero, then return optional outputs.
- per : bool, optional
- If non-zero, data points are considered periodic with period x[m-1] -
- x[0] and a smooth periodic spline approximation is returned. Values of
- y[m-1] and w[m-1] are not used.
- quiet : bool, optional
- Non-zero to suppress messages.
- Returns
- -------
- tck : tuple
- A tuple (t,c,k) containing the vector of knots, the B-spline
- coefficients, and the degree of the spline.
- fp : array, optional
- The weighted sum of squared residuals of the spline approximation.
- ier : int, optional
- An integer flag about splrep success. Success is indicated if ier<=0.
- If ier in [1,2,3] an error occurred but was not raised. Otherwise an
- error is raised.
- msg : str, optional
- A message corresponding to the integer flag, ier.
- See Also
- --------
- UnivariateSpline, BivariateSpline
- splprep, splev, sproot, spalde, splint
- bisplrep, bisplev
- BSpline
- make_interp_spline
- Notes
- -----
- See `splev` for evaluation of the spline and its derivatives. Uses the
- FORTRAN routine ``curfit`` from FITPACK.
- The user is responsible for assuring that the values of `x` are unique.
- Otherwise, `splrep` will not return sensible results.
- If provided, knots `t` must satisfy the Schoenberg-Whitney conditions,
- i.e., there must be a subset of data points ``x[j]`` such that
- ``t[j] < x[j] < t[j+k+1]``, for ``j=0, 1,...,n-k-2``.
- This routine zero-pads the coefficients array ``c`` to have the same length
- as the array of knots ``t`` (the trailing ``k + 1`` coefficients are ignored
- by the evaluation routines, `splev` and `BSpline`.) This is in contrast with
- `splprep`, which does not zero-pad the coefficients.
- References
- ----------
- Based on algorithms described in [1]_, [2]_, [3]_, and [4]_:
- .. [1] P. Dierckx, "An algorithm for smoothing, differentiation and
- integration of experimental data using spline functions",
- J.Comp.Appl.Maths 1 (1975) 165-184.
- .. [2] P. Dierckx, "A fast algorithm for smoothing data on a rectangular
- grid while using spline functions", SIAM J.Numer.Anal. 19 (1982)
- 1286-1304.
- .. [3] P. Dierckx, "An improved algorithm for curve fitting with spline
- functions", report tw54, Dept. Computer Science,K.U. Leuven, 1981.
- .. [4] P. Dierckx, "Curve and surface fitting with splines", Monographs on
- Numerical Analysis, Oxford University Press, 1993.
- Examples
- --------
- You can interpolate 1-D points with a B-spline curve.
- Further examples are given in
- :ref:`in the tutorial <tutorial-interpolate_splXXX>`.
- >>> import numpy as np
- >>> import matplotlib.pyplot as plt
- >>> from scipy.interpolate import splev, splrep
- >>> x = np.linspace(0, 10, 10)
- >>> y = np.sin(x)
- >>> spl = splrep(x, y)
- >>> x2 = np.linspace(0, 10, 200)
- >>> y2 = splev(x2, spl)
- >>> plt.plot(x, y, 'o', x2, y2)
- >>> plt.show()
- """
- res = _impl.splrep(x, y, w, xb, xe, k, task, s, t, full_output, per, quiet)
- return res
- def splev(x, tck, der=0, ext=0):
- """
- Evaluate a B-spline or its derivatives.
- Given the knots and coefficients of a B-spline representation, evaluate
- the value of the smoothing polynomial and its derivatives. This is a
- wrapper around the FORTRAN routines splev and splder of FITPACK.
- Parameters
- ----------
- x : array_like
- An array of points at which to return the value of the smoothed
- spline or its derivatives. If `tck` was returned from `splprep`,
- then the parameter values, u should be given.
- tck : 3-tuple or a BSpline object
- If a tuple, then it should be a sequence of length 3 returned by
- `splrep` or `splprep` containing the knots, coefficients, and degree
- of the spline. (Also see Notes.)
- der : int, optional
- The order of derivative of the spline to compute (must be less than
- or equal to k, the degree of the spline).
- ext : int, optional
- Controls the value returned for elements of ``x`` not in the
- interval defined by the knot sequence.
- * if ext=0, return the extrapolated value.
- * if ext=1, return 0
- * if ext=2, raise a ValueError
- * if ext=3, return the boundary value.
- The default value is 0.
- Returns
- -------
- y : ndarray or list of ndarrays
- An array of values representing the spline function evaluated at
- the points in `x`. If `tck` was returned from `splprep`, then this
- is a list of arrays representing the curve in an N-D space.
- Notes
- -----
- Manipulating the tck-tuples directly is not recommended. In new code,
- prefer using `BSpline` objects.
- See Also
- --------
- splprep, splrep, sproot, spalde, splint
- bisplrep, bisplev
- BSpline
- References
- ----------
- .. [1] C. de Boor, "On calculating with b-splines", J. Approximation
- Theory, 6, p.50-62, 1972.
- .. [2] M. G. Cox, "The numerical evaluation of b-splines", J. Inst. Maths
- Applics, 10, p.134-149, 1972.
- .. [3] P. Dierckx, "Curve and surface fitting with splines", Monographs
- on Numerical Analysis, Oxford University Press, 1993.
- Examples
- --------
- Examples are given :ref:`in the tutorial <tutorial-interpolate_splXXX>`.
- """
- if isinstance(tck, BSpline):
- if tck.c.ndim > 1:
- mesg = ("Calling splev() with BSpline objects with c.ndim > 1 is "
- "not allowed. Use BSpline.__call__(x) instead.")
- raise ValueError(mesg)
- # remap the out-of-bounds behavior
- try:
- extrapolate = {0: True, }[ext]
- except KeyError as e:
- raise ValueError("Extrapolation mode %s is not supported "
- "by BSpline." % ext) from e
- return tck(x, der, extrapolate=extrapolate)
- else:
- return _impl.splev(x, tck, der, ext)
- def splint(a, b, tck, full_output=0):
- """
- Evaluate the definite integral of a B-spline between two given points.
- Parameters
- ----------
- a, b : float
- The end-points of the integration interval.
- tck : tuple or a BSpline instance
- If a tuple, then it should be a sequence of length 3, containing the
- vector of knots, the B-spline coefficients, and the degree of the
- spline (see `splev`).
- full_output : int, optional
- Non-zero to return optional output.
- Returns
- -------
- integral : float
- The resulting integral.
- wrk : ndarray
- An array containing the integrals of the normalized B-splines
- defined on the set of knots.
- (Only returned if `full_output` is non-zero)
- Notes
- -----
- `splint` silently assumes that the spline function is zero outside the data
- interval (`a`, `b`).
- Manipulating the tck-tuples directly is not recommended. In new code,
- prefer using the `BSpline` objects.
- See Also
- --------
- splprep, splrep, sproot, spalde, splev
- bisplrep, bisplev
- BSpline
- References
- ----------
- .. [1] P.W. Gaffney, The calculation of indefinite integrals of b-splines",
- J. Inst. Maths Applics, 17, p.37-41, 1976.
- .. [2] P. Dierckx, "Curve and surface fitting with splines", Monographs
- on Numerical Analysis, Oxford University Press, 1993.
- Examples
- --------
- Examples are given :ref:`in the tutorial <tutorial-interpolate_splXXX>`.
- """
- if isinstance(tck, BSpline):
- if tck.c.ndim > 1:
- mesg = ("Calling splint() with BSpline objects with c.ndim > 1 is "
- "not allowed. Use BSpline.integrate() instead.")
- raise ValueError(mesg)
- if full_output != 0:
- mesg = ("full_output = %s is not supported. Proceeding as if "
- "full_output = 0" % full_output)
- return tck.integrate(a, b, extrapolate=False)
- else:
- return _impl.splint(a, b, tck, full_output)
- def sproot(tck, mest=10):
- """
- Find the roots of a cubic B-spline.
- Given the knots (>=8) and coefficients of a cubic B-spline return the
- roots of the spline.
- Parameters
- ----------
- tck : tuple or a BSpline object
- If a tuple, then it should be a sequence of length 3, containing the
- vector of knots, the B-spline coefficients, and the degree of the
- spline.
- The number of knots must be >= 8, and the degree must be 3.
- The knots must be a montonically increasing sequence.
- mest : int, optional
- An estimate of the number of zeros (Default is 10).
- Returns
- -------
- zeros : ndarray
- An array giving the roots of the spline.
- Notes
- -----
- Manipulating the tck-tuples directly is not recommended. In new code,
- prefer using the `BSpline` objects.
- See Also
- --------
- splprep, splrep, splint, spalde, splev
- bisplrep, bisplev
- BSpline
- References
- ----------
- .. [1] C. de Boor, "On calculating with b-splines", J. Approximation
- Theory, 6, p.50-62, 1972.
- .. [2] M. G. Cox, "The numerical evaluation of b-splines", J. Inst. Maths
- Applics, 10, p.134-149, 1972.
- .. [3] P. Dierckx, "Curve and surface fitting with splines", Monographs
- on Numerical Analysis, Oxford University Press, 1993.
- Examples
- --------
- For some data, this method may miss a root. This happens when one of
- the spline knots (which FITPACK places automatically) happens to
- coincide with the true root. A workaround is to convert to `PPoly`,
- which uses a different root-finding algorithm.
- For example,
- >>> x = [1.96, 1.97, 1.98, 1.99, 2.00, 2.01, 2.02, 2.03, 2.04, 2.05]
- >>> y = [-6.365470e-03, -4.790580e-03, -3.204320e-03, -1.607270e-03,
- ... 4.440892e-16, 1.616930e-03, 3.243000e-03, 4.877670e-03,
- ... 6.520430e-03, 8.170770e-03]
- >>> from scipy.interpolate import splrep, sproot, PPoly
- >>> tck = splrep(x, y, s=0)
- >>> sproot(tck)
- array([], dtype=float64)
- Converting to a PPoly object does find the roots at `x=2`:
- >>> ppoly = PPoly.from_spline(tck)
- >>> ppoly.roots(extrapolate=False)
- array([2.])
- Further examples are given :ref:`in the tutorial
- <tutorial-interpolate_splXXX>`.
- """
- if isinstance(tck, BSpline):
- if tck.c.ndim > 1:
- mesg = ("Calling sproot() with BSpline objects with c.ndim > 1 is "
- "not allowed.")
- raise ValueError(mesg)
- t, c, k = tck.tck
- # _impl.sproot expects the interpolation axis to be last, so roll it.
- # NB: This transpose is a no-op if c is 1D.
- sh = tuple(range(c.ndim))
- c = c.transpose(sh[1:] + (0,))
- return _impl.sproot((t, c, k), mest)
- else:
- return _impl.sproot(tck, mest)
- def spalde(x, tck):
- """
- Evaluate all derivatives of a B-spline.
- Given the knots and coefficients of a cubic B-spline compute all
- derivatives up to order k at a point (or set of points).
- Parameters
- ----------
- x : array_like
- A point or a set of points at which to evaluate the derivatives.
- Note that ``t(k) <= x <= t(n-k+1)`` must hold for each `x`.
- tck : tuple
- A tuple ``(t, c, k)``, containing the vector of knots, the B-spline
- coefficients, and the degree of the spline (see `splev`).
- Returns
- -------
- results : {ndarray, list of ndarrays}
- An array (or a list of arrays) containing all derivatives
- up to order k inclusive for each point `x`.
- See Also
- --------
- splprep, splrep, splint, sproot, splev, bisplrep, bisplev,
- BSpline
- References
- ----------
- .. [1] C. de Boor: On calculating with b-splines, J. Approximation Theory
- 6 (1972) 50-62.
- .. [2] M. G. Cox : The numerical evaluation of b-splines, J. Inst. Maths
- applics 10 (1972) 134-149.
- .. [3] P. Dierckx : Curve and surface fitting with splines, Monographs on
- Numerical Analysis, Oxford University Press, 1993.
- Examples
- --------
- Examples are given :ref:`in the tutorial <tutorial-interpolate_splXXX>`.
- """
- if isinstance(tck, BSpline):
- raise TypeError("spalde does not accept BSpline instances.")
- else:
- return _impl.spalde(x, tck)
- def insert(x, tck, m=1, per=0):
- """
- Insert knots into a B-spline.
- Given the knots and coefficients of a B-spline representation, create a
- new B-spline with a knot inserted `m` times at point `x`.
- This is a wrapper around the FORTRAN routine insert of FITPACK.
- Parameters
- ----------
- x (u) : array_like
- A 1-D point at which to insert a new knot(s). If `tck` was returned
- from ``splprep``, then the parameter values, u should be given.
- tck : a `BSpline` instance or a tuple
- If tuple, then it is expected to be a tuple (t,c,k) containing
- the vector of knots, the B-spline coefficients, and the degree of
- the spline.
- m : int, optional
- The number of times to insert the given knot (its multiplicity).
- Default is 1.
- per : int, optional
- If non-zero, the input spline is considered periodic.
- Returns
- -------
- BSpline instance or a tuple
- A new B-spline with knots t, coefficients c, and degree k.
- ``t(k+1) <= x <= t(n-k)``, where k is the degree of the spline.
- In case of a periodic spline (``per != 0``) there must be
- either at least k interior knots t(j) satisfying ``t(k+1)<t(j)<=x``
- or at least k interior knots t(j) satisfying ``x<=t(j)<t(n-k)``.
- A tuple is returned iff the input argument `tck` is a tuple, otherwise
- a BSpline object is constructed and returned.
- Notes
- -----
- Based on algorithms from [1]_ and [2]_.
- Manipulating the tck-tuples directly is not recommended. In new code,
- prefer using the `BSpline` objects.
- References
- ----------
- .. [1] W. Boehm, "Inserting new knots into b-spline curves.",
- Computer Aided Design, 12, p.199-201, 1980.
- .. [2] P. Dierckx, "Curve and surface fitting with splines, Monographs on
- Numerical Analysis", Oxford University Press, 1993.
- Examples
- --------
- You can insert knots into a B-spline.
- >>> from scipy.interpolate import splrep, insert
- >>> import numpy as np
- >>> x = np.linspace(0, 10, 5)
- >>> y = np.sin(x)
- >>> tck = splrep(x, y)
- >>> tck[0]
- array([ 0., 0., 0., 0., 5., 10., 10., 10., 10.])
- A knot is inserted:
- >>> tck_inserted = insert(3, tck)
- >>> tck_inserted[0]
- array([ 0., 0., 0., 0., 3., 5., 10., 10., 10., 10.])
- Some knots are inserted:
- >>> tck_inserted2 = insert(8, tck, m=3)
- >>> tck_inserted2[0]
- array([ 0., 0., 0., 0., 5., 8., 8., 8., 10., 10., 10., 10.])
- """
- if isinstance(tck, BSpline):
- t, c, k = tck.tck
- # FITPACK expects the interpolation axis to be last, so roll it over
- # NB: if c array is 1D, transposes are no-ops
- sh = tuple(range(c.ndim))
- c = c.transpose(sh[1:] + (0,))
- t_, c_, k_ = _impl.insert(x, (t, c, k), m, per)
- # and roll the last axis back
- c_ = np.asarray(c_)
- c_ = c_.transpose((sh[-1],) + sh[:-1])
- return BSpline(t_, c_, k_)
- else:
- return _impl.insert(x, tck, m, per)
- def splder(tck, n=1):
- """
- Compute the spline representation of the derivative of a given spline
- Parameters
- ----------
- tck : BSpline instance or a tuple of (t, c, k)
- Spline whose derivative to compute
- n : int, optional
- Order of derivative to evaluate. Default: 1
- Returns
- -------
- `BSpline` instance or tuple
- Spline of order k2=k-n representing the derivative
- of the input spline.
- A tuple is returned iff the input argument `tck` is a tuple, otherwise
- a BSpline object is constructed and returned.
- Notes
- -----
- .. versionadded:: 0.13.0
- See Also
- --------
- splantider, splev, spalde
- BSpline
- Examples
- --------
- This can be used for finding maxima of a curve:
- >>> from scipy.interpolate import splrep, splder, sproot
- >>> import numpy as np
- >>> x = np.linspace(0, 10, 70)
- >>> y = np.sin(x)
- >>> spl = splrep(x, y, k=4)
- Now, differentiate the spline and find the zeros of the
- derivative. (NB: `sproot` only works for order 3 splines, so we
- fit an order 4 spline):
- >>> dspl = splder(spl)
- >>> sproot(dspl) / np.pi
- array([ 0.50000001, 1.5 , 2.49999998])
- This agrees well with roots :math:`\\pi/2 + n\\pi` of
- :math:`\\cos(x) = \\sin'(x)`.
- """
- if isinstance(tck, BSpline):
- return tck.derivative(n)
- else:
- return _impl.splder(tck, n)
- def splantider(tck, n=1):
- """
- Compute the spline for the antiderivative (integral) of a given spline.
- Parameters
- ----------
- tck : BSpline instance or a tuple of (t, c, k)
- Spline whose antiderivative to compute
- n : int, optional
- Order of antiderivative to evaluate. Default: 1
- Returns
- -------
- BSpline instance or a tuple of (t2, c2, k2)
- Spline of order k2=k+n representing the antiderivative of the input
- spline.
- A tuple is returned iff the input argument `tck` is a tuple, otherwise
- a BSpline object is constructed and returned.
- See Also
- --------
- splder, splev, spalde
- BSpline
- Notes
- -----
- The `splder` function is the inverse operation of this function.
- Namely, ``splder(splantider(tck))`` is identical to `tck`, modulo
- rounding error.
- .. versionadded:: 0.13.0
- Examples
- --------
- >>> from scipy.interpolate import splrep, splder, splantider, splev
- >>> import numpy as np
- >>> x = np.linspace(0, np.pi/2, 70)
- >>> y = 1 / np.sqrt(1 - 0.8*np.sin(x)**2)
- >>> spl = splrep(x, y)
- The derivative is the inverse operation of the antiderivative,
- although some floating point error accumulates:
- >>> splev(1.7, spl), splev(1.7, splder(splantider(spl)))
- (array(2.1565429877197317), array(2.1565429877201865))
- Antiderivative can be used to evaluate definite integrals:
- >>> ispl = splantider(spl)
- >>> splev(np.pi/2, ispl) - splev(0, ispl)
- 2.2572053588768486
- This is indeed an approximation to the complete elliptic integral
- :math:`K(m) = \\int_0^{\\pi/2} [1 - m\\sin^2 x]^{-1/2} dx`:
- >>> from scipy.special import ellipk
- >>> ellipk(0.8)
- 2.2572053268208538
- """
- if isinstance(tck, BSpline):
- return tck.antiderivative(n)
- else:
- return _impl.splantider(tck, n)
|