123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397 |
- import pytest
- import numpy as np
- from numpy import cos, sin, pi
- from numpy.testing import (assert_equal, assert_almost_equal, assert_allclose,
- assert_, suppress_warnings)
- from scipy.integrate import (quadrature, romberg, romb, newton_cotes,
- cumulative_trapezoid, cumtrapz, trapz, trapezoid,
- quad, simpson, simps, fixed_quad, AccuracyWarning)
- from scipy.integrate._quadrature import _qmc_quad as qmc_quad
- from scipy import stats, special as sc
- class TestFixedQuad:
- def test_scalar(self):
- n = 4
- expected = 1/(2*n)
- got, _ = fixed_quad(lambda x: x**(2*n - 1), 0, 1, n=n)
- # quadrature exact for this input
- assert_allclose(got, expected, rtol=1e-12)
- def test_vector(self):
- n = 4
- p = np.arange(1, 2*n)
- expected = 1/(p + 1)
- got, _ = fixed_quad(lambda x: x**p[:, None], 0, 1, n=n)
- assert_allclose(got, expected, rtol=1e-12)
- class TestQuadrature:
- def quad(self, x, a, b, args):
- raise NotImplementedError
- def test_quadrature(self):
- # Typical function with two extra arguments:
- def myfunc(x, n, z): # Bessel function integrand
- return cos(n*x-z*sin(x))/pi
- val, err = quadrature(myfunc, 0, pi, (2, 1.8))
- table_val = 0.30614353532540296487
- assert_almost_equal(val, table_val, decimal=7)
- def test_quadrature_rtol(self):
- def myfunc(x, n, z): # Bessel function integrand
- return 1e90 * cos(n*x-z*sin(x))/pi
- val, err = quadrature(myfunc, 0, pi, (2, 1.8), rtol=1e-10)
- table_val = 1e90 * 0.30614353532540296487
- assert_allclose(val, table_val, rtol=1e-10)
- def test_quadrature_miniter(self):
- # Typical function with two extra arguments:
- def myfunc(x, n, z): # Bessel function integrand
- return cos(n*x-z*sin(x))/pi
- table_val = 0.30614353532540296487
- for miniter in [5, 52]:
- val, err = quadrature(myfunc, 0, pi, (2, 1.8), miniter=miniter)
- assert_almost_equal(val, table_val, decimal=7)
- assert_(err < 1.0)
- def test_quadrature_single_args(self):
- def myfunc(x, n):
- return 1e90 * cos(n*x-1.8*sin(x))/pi
- val, err = quadrature(myfunc, 0, pi, args=2, rtol=1e-10)
- table_val = 1e90 * 0.30614353532540296487
- assert_allclose(val, table_val, rtol=1e-10)
- def test_romberg(self):
- # Typical function with two extra arguments:
- def myfunc(x, n, z): # Bessel function integrand
- return cos(n*x-z*sin(x))/pi
- val = romberg(myfunc, 0, pi, args=(2, 1.8))
- table_val = 0.30614353532540296487
- assert_almost_equal(val, table_val, decimal=7)
- def test_romberg_rtol(self):
- # Typical function with two extra arguments:
- def myfunc(x, n, z): # Bessel function integrand
- return 1e19*cos(n*x-z*sin(x))/pi
- val = romberg(myfunc, 0, pi, args=(2, 1.8), rtol=1e-10)
- table_val = 1e19*0.30614353532540296487
- assert_allclose(val, table_val, rtol=1e-10)
- def test_romb(self):
- assert_equal(romb(np.arange(17)), 128)
- def test_romb_gh_3731(self):
- # Check that romb makes maximal use of data points
- x = np.arange(2**4+1)
- y = np.cos(0.2*x)
- val = romb(y)
- val2, err = quad(lambda x: np.cos(0.2*x), x.min(), x.max())
- assert_allclose(val, val2, rtol=1e-8, atol=0)
- # should be equal to romb with 2**k+1 samples
- with suppress_warnings() as sup:
- sup.filter(AccuracyWarning, "divmax .4. exceeded")
- val3 = romberg(lambda x: np.cos(0.2*x), x.min(), x.max(), divmax=4)
- assert_allclose(val, val3, rtol=1e-12, atol=0)
- def test_non_dtype(self):
- # Check that we work fine with functions returning float
- import math
- valmath = romberg(math.sin, 0, 1)
- expected_val = 0.45969769413185085
- assert_almost_equal(valmath, expected_val, decimal=7)
- def test_newton_cotes(self):
- """Test the first few degrees, for evenly spaced points."""
- n = 1
- wts, errcoff = newton_cotes(n, 1)
- assert_equal(wts, n*np.array([0.5, 0.5]))
- assert_almost_equal(errcoff, -n**3/12.0)
- n = 2
- wts, errcoff = newton_cotes(n, 1)
- assert_almost_equal(wts, n*np.array([1.0, 4.0, 1.0])/6.0)
- assert_almost_equal(errcoff, -n**5/2880.0)
- n = 3
- wts, errcoff = newton_cotes(n, 1)
- assert_almost_equal(wts, n*np.array([1.0, 3.0, 3.0, 1.0])/8.0)
- assert_almost_equal(errcoff, -n**5/6480.0)
- n = 4
- wts, errcoff = newton_cotes(n, 1)
- assert_almost_equal(wts, n*np.array([7.0, 32.0, 12.0, 32.0, 7.0])/90.0)
- assert_almost_equal(errcoff, -n**7/1935360.0)
- def test_newton_cotes2(self):
- """Test newton_cotes with points that are not evenly spaced."""
- x = np.array([0.0, 1.5, 2.0])
- y = x**2
- wts, errcoff = newton_cotes(x)
- exact_integral = 8.0/3
- numeric_integral = np.dot(wts, y)
- assert_almost_equal(numeric_integral, exact_integral)
- x = np.array([0.0, 1.4, 2.1, 3.0])
- y = x**2
- wts, errcoff = newton_cotes(x)
- exact_integral = 9.0
- numeric_integral = np.dot(wts, y)
- assert_almost_equal(numeric_integral, exact_integral)
- def test_simpson(self):
- y = np.arange(17)
- assert_equal(simpson(y), 128)
- assert_equal(simpson(y, dx=0.5), 64)
- assert_equal(simpson(y, x=np.linspace(0, 4, 17)), 32)
- y = np.arange(4)
- x = 2**y
- assert_equal(simpson(y, x=x, even='avg'), 13.875)
- assert_equal(simpson(y, x=x, even='first'), 13.75)
- assert_equal(simpson(y, x=x, even='last'), 14)
- # Tests for checking base case
- x = np.array([3])
- y = np.power(x, 2)
- assert_equal(simpson(y, x=x, axis=0), 0.0)
- assert_equal(simpson(y, x=x, axis=-1), 0.0)
- x = np.array([3, 3, 3, 3])
- y = np.power(x, 2)
- assert_equal(simpson(y, x=x, axis=0), 0.0)
- assert_equal(simpson(y, x=x, axis=-1), 0.0)
- x = np.array([[1, 2, 4, 8], [1, 2, 4, 8], [1, 2, 4, 8]])
- y = np.power(x, 2)
- zero_axis = [0.0, 0.0, 0.0, 0.0]
- default_axis = [175.75, 175.75, 175.75]
- assert_equal(simpson(y, x=x, axis=0), zero_axis)
- assert_equal(simpson(y, x=x, axis=-1), default_axis)
- x = np.array([[1, 2, 4, 8], [1, 2, 4, 8], [1, 8, 16, 32]])
- y = np.power(x, 2)
- zero_axis = [0.0, 136.0, 1088.0, 8704.0]
- default_axis = [175.75, 175.75, 11292.25]
- assert_equal(simpson(y, x=x, axis=0), zero_axis)
- assert_equal(simpson(y, x=x, axis=-1), default_axis)
- @pytest.mark.parametrize('droplast', [False, True])
- def test_simpson_2d_integer_no_x(self, droplast):
- # The inputs are 2d integer arrays. The results should be
- # identical to the results when the inputs are floating point.
- y = np.array([[2, 2, 4, 4, 8, 8, -4, 5],
- [4, 4, 2, -4, 10, 22, -2, 10]])
- if droplast:
- y = y[:, :-1]
- result = simpson(y, axis=-1)
- expected = simpson(np.array(y, dtype=np.float64), axis=-1)
- assert_equal(result, expected)
- def test_simps(self):
- # Basic coverage test for the alias
- y = np.arange(4)
- x = 2**y
- assert_equal(simpson(y, x=x, dx=0.5, even='first'),
- simps(y, x=x, dx=0.5, even='first'))
- class TestCumulative_trapezoid:
- def test_1d(self):
- x = np.linspace(-2, 2, num=5)
- y = x
- y_int = cumulative_trapezoid(y, x, initial=0)
- y_expected = [0., -1.5, -2., -1.5, 0.]
- assert_allclose(y_int, y_expected)
- y_int = cumulative_trapezoid(y, x, initial=None)
- assert_allclose(y_int, y_expected[1:])
- def test_y_nd_x_nd(self):
- x = np.arange(3 * 2 * 4).reshape(3, 2, 4)
- y = x
- y_int = cumulative_trapezoid(y, x, initial=0)
- y_expected = np.array([[[0., 0.5, 2., 4.5],
- [0., 4.5, 10., 16.5]],
- [[0., 8.5, 18., 28.5],
- [0., 12.5, 26., 40.5]],
- [[0., 16.5, 34., 52.5],
- [0., 20.5, 42., 64.5]]])
- assert_allclose(y_int, y_expected)
- # Try with all axes
- shapes = [(2, 2, 4), (3, 1, 4), (3, 2, 3)]
- for axis, shape in zip([0, 1, 2], shapes):
- y_int = cumulative_trapezoid(y, x, initial=3.45, axis=axis)
- assert_equal(y_int.shape, (3, 2, 4))
- y_int = cumulative_trapezoid(y, x, initial=None, axis=axis)
- assert_equal(y_int.shape, shape)
- def test_y_nd_x_1d(self):
- y = np.arange(3 * 2 * 4).reshape(3, 2, 4)
- x = np.arange(4)**2
- # Try with all axes
- ys_expected = (
- np.array([[[4., 5., 6., 7.],
- [8., 9., 10., 11.]],
- [[40., 44., 48., 52.],
- [56., 60., 64., 68.]]]),
- np.array([[[2., 3., 4., 5.]],
- [[10., 11., 12., 13.]],
- [[18., 19., 20., 21.]]]),
- np.array([[[0.5, 5., 17.5],
- [4.5, 21., 53.5]],
- [[8.5, 37., 89.5],
- [12.5, 53., 125.5]],
- [[16.5, 69., 161.5],
- [20.5, 85., 197.5]]]))
- for axis, y_expected in zip([0, 1, 2], ys_expected):
- y_int = cumulative_trapezoid(y, x=x[:y.shape[axis]], axis=axis,
- initial=None)
- assert_allclose(y_int, y_expected)
- def test_x_none(self):
- y = np.linspace(-2, 2, num=5)
- y_int = cumulative_trapezoid(y)
- y_expected = [-1.5, -2., -1.5, 0.]
- assert_allclose(y_int, y_expected)
- y_int = cumulative_trapezoid(y, initial=1.23)
- y_expected = [1.23, -1.5, -2., -1.5, 0.]
- assert_allclose(y_int, y_expected)
- y_int = cumulative_trapezoid(y, dx=3)
- y_expected = [-4.5, -6., -4.5, 0.]
- assert_allclose(y_int, y_expected)
- y_int = cumulative_trapezoid(y, dx=3, initial=1.23)
- y_expected = [1.23, -4.5, -6., -4.5, 0.]
- assert_allclose(y_int, y_expected)
- def test_cumtrapz(self):
- # Basic coverage test for the alias
- x = np.arange(3 * 2 * 4).reshape(3, 2, 4)
- y = x
- assert_allclose(cumulative_trapezoid(y, x, dx=0.5, axis=0, initial=0),
- cumtrapz(y, x, dx=0.5, axis=0, initial=0),
- rtol=1e-14)
- class TestTrapezoid():
- """This function is tested in NumPy more extensive, just do some
- basic due diligence here."""
- def test_trapezoid(self):
- y = np.arange(17)
- assert_equal(trapezoid(y), 128)
- assert_equal(trapezoid(y, dx=0.5), 64)
- assert_equal(trapezoid(y, x=np.linspace(0, 4, 17)), 32)
- y = np.arange(4)
- x = 2**y
- assert_equal(trapezoid(y, x=x, dx=0.1), 13.5)
- def test_trapz(self):
- # Basic coverage test for the alias
- y = np.arange(4)
- x = 2**y
- assert_equal(trapezoid(y, x=x, dx=0.5, axis=0),
- trapz(y, x=x, dx=0.5, axis=0))
- class TestQMCQuad():
- def test_input_validation(self):
- message = "`func` must be callable."
- with pytest.raises(TypeError, match=message):
- qmc_quad("a duck", [0, 0], [1, 1])
- message = "`func` must evaluate the integrand at points..."
- with pytest.raises(ValueError, match=message):
- qmc_quad(lambda: 1, [0, 0], [1, 1])
- def func(x):
- assert x.ndim == 1
- return np.sum(x)
- message = "Exception encountered when attempting vectorized call..."
- with pytest.warns(UserWarning, match=message):
- qmc_quad(func, [0, 0], [1, 1])
- message = "`n_points` must be an integer."
- with pytest.raises(TypeError, match=message):
- qmc_quad(lambda x: 1, [0, 0], [1, 1], n_points=1024.5)
- message = "`n_estimates` must be an integer."
- with pytest.raises(TypeError, match=message):
- qmc_quad(lambda x: 1, [0, 0], [1, 1], n_estimates=8.5)
- message = "`qrng` must be an instance of scipy.stats.qmc.QMCEngine."
- with pytest.raises(TypeError, match=message):
- qmc_quad(lambda x: 1, [0, 0], [1, 1], qrng="a duck")
- message = "`qrng` must be initialized with dimensionality equal to "
- with pytest.raises(ValueError, match=message):
- qmc_quad(lambda x: 1, [0, 0], [1, 1], qrng=stats.qmc.Sobol(1))
- message = r"`log` must be boolean \(`True` or `False`\)."
- with pytest.raises(TypeError, match=message):
- qmc_quad(lambda x: 1, [0, 0], [1, 1], log=10)
- def basic_test(self, n_points=2**8, n_estimates=8, signs=np.ones(2)):
- ndim = 2
- mean = np.zeros(ndim)
- cov = np.eye(ndim)
- def func(x):
- return stats.multivariate_normal.pdf(x, mean, cov)
- rng = np.random.default_rng(2879434385674690281)
- qrng = stats.qmc.Sobol(ndim, seed=rng)
- a = np.zeros(ndim)
- b = np.ones(ndim) * signs
- res = qmc_quad(func, a, b, n_points=n_points,
- n_estimates=n_estimates, args=(mean, cov), qrng=qrng)
- ref = stats.multivariate_normal.cdf(b, mean, cov, lower_limit=a)
- atol = sc.stdtrit(n_estimates-1, 0.995) * res.standard_error # 99% CI
- assert_allclose(res.integral, ref, atol=atol)
- assert np.prod(signs)*res.integral > 0
- rng = np.random.default_rng(2879434385674690281)
- qrng = stats.qmc.Sobol(ndim, seed=rng)
- logres = qmc_quad(lambda *args: np.log(func(*args)), a, b,
- n_points=n_points, n_estimates=n_estimates,
- args=(mean, cov), log=True, qrng=qrng)
- assert_allclose(np.exp(logres.integral), res.integral)
- assert np.imag(logres.integral) == (np.pi if np.prod(signs) < 0 else 0)
- @pytest.mark.parametrize("n_points", [2**8, 2**12])
- @pytest.mark.parametrize("n_estimates", [8, 16])
- def test_basic(self, n_points, n_estimates):
- self.basic_test(n_points, n_estimates)
- @pytest.mark.parametrize("signs", [[1, 1], [-1, -1], [-1, 1], [1, -1]])
- def test_sign(self, signs):
- self.basic_test(signs=signs)
- @pytest.mark.parametrize("log", [False, True])
- def test_zero(self, log):
- message = "A lower limit was equal to an upper limit, so"
- with pytest.warns(UserWarning, match=message):
- res = qmc_quad(lambda x: 1, [0, 0], [0, 1], log=log)
- assert res.integral == (-np.inf if log else 0)
- assert res.standard_error == 0
- def test_flexible_input(self):
- # check that qrng is not required
- # also checks that for 1d problems, a and b can be scalars
- def func(x):
- return stats.norm.pdf(x, scale=2)
- res = qmc_quad(func, 0, 1)
- ref = stats.norm.cdf(1, scale=2) - stats.norm.cdf(0, scale=2)
- assert_allclose(res.integral, ref, 1e-2)
|