123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830 |
- # Authors: Nils Wagner, Ed Schofield, Pauli Virtanen, John Travers
- """
- Tests for numerical integration.
- """
- import numpy as np
- from numpy import (arange, zeros, array, dot, sqrt, cos, sin, eye, pi, exp,
- allclose)
- from numpy.testing import (
- assert_, assert_array_almost_equal,
- assert_allclose, assert_array_equal, assert_equal, assert_warns)
- from pytest import raises as assert_raises
- from scipy.integrate import odeint, ode, complex_ode
- #------------------------------------------------------------------------------
- # Test ODE integrators
- #------------------------------------------------------------------------------
- class TestOdeint:
- # Check integrate.odeint
- def _do_problem(self, problem):
- t = arange(0.0, problem.stop_t, 0.05)
- # Basic case
- z, infodict = odeint(problem.f, problem.z0, t, full_output=True)
- assert_(problem.verify(z, t))
- # Use tfirst=True
- z, infodict = odeint(lambda t, y: problem.f(y, t), problem.z0, t,
- full_output=True, tfirst=True)
- assert_(problem.verify(z, t))
- if hasattr(problem, 'jac'):
- # Use Dfun
- z, infodict = odeint(problem.f, problem.z0, t, Dfun=problem.jac,
- full_output=True)
- assert_(problem.verify(z, t))
- # Use Dfun and tfirst=True
- z, infodict = odeint(lambda t, y: problem.f(y, t), problem.z0, t,
- Dfun=lambda t, y: problem.jac(y, t),
- full_output=True, tfirst=True)
- assert_(problem.verify(z, t))
- def test_odeint(self):
- for problem_cls in PROBLEMS:
- problem = problem_cls()
- if problem.cmplx:
- continue
- self._do_problem(problem)
- class TestODEClass:
- ode_class = None # Set in subclass.
- def _do_problem(self, problem, integrator, method='adams'):
- # ode has callback arguments in different order than odeint
- f = lambda t, z: problem.f(z, t)
- jac = None
- if hasattr(problem, 'jac'):
- jac = lambda t, z: problem.jac(z, t)
- integrator_params = {}
- if problem.lband is not None or problem.uband is not None:
- integrator_params['uband'] = problem.uband
- integrator_params['lband'] = problem.lband
- ig = self.ode_class(f, jac)
- ig.set_integrator(integrator,
- atol=problem.atol/10,
- rtol=problem.rtol/10,
- method=method,
- **integrator_params)
- ig.set_initial_value(problem.z0, t=0.0)
- z = ig.integrate(problem.stop_t)
- assert_array_equal(z, ig.y)
- assert_(ig.successful(), (problem, method))
- assert_(ig.get_return_code() > 0, (problem, method))
- assert_(problem.verify(array([z]), problem.stop_t), (problem, method))
- class TestOde(TestODEClass):
- ode_class = ode
- def test_vode(self):
- # Check the vode solver
- for problem_cls in PROBLEMS:
- problem = problem_cls()
- if problem.cmplx:
- continue
- if not problem.stiff:
- self._do_problem(problem, 'vode', 'adams')
- self._do_problem(problem, 'vode', 'bdf')
- def test_zvode(self):
- # Check the zvode solver
- for problem_cls in PROBLEMS:
- problem = problem_cls()
- if not problem.stiff:
- self._do_problem(problem, 'zvode', 'adams')
- self._do_problem(problem, 'zvode', 'bdf')
- def test_lsoda(self):
- # Check the lsoda solver
- for problem_cls in PROBLEMS:
- problem = problem_cls()
- if problem.cmplx:
- continue
- self._do_problem(problem, 'lsoda')
- def test_dopri5(self):
- # Check the dopri5 solver
- for problem_cls in PROBLEMS:
- problem = problem_cls()
- if problem.cmplx:
- continue
- if problem.stiff:
- continue
- if hasattr(problem, 'jac'):
- continue
- self._do_problem(problem, 'dopri5')
- def test_dop853(self):
- # Check the dop853 solver
- for problem_cls in PROBLEMS:
- problem = problem_cls()
- if problem.cmplx:
- continue
- if problem.stiff:
- continue
- if hasattr(problem, 'jac'):
- continue
- self._do_problem(problem, 'dop853')
- def test_concurrent_fail(self):
- for sol in ('vode', 'zvode', 'lsoda'):
- f = lambda t, y: 1.0
- r = ode(f).set_integrator(sol)
- r.set_initial_value(0, 0)
- r2 = ode(f).set_integrator(sol)
- r2.set_initial_value(0, 0)
- r.integrate(r.t + 0.1)
- r2.integrate(r2.t + 0.1)
- assert_raises(RuntimeError, r.integrate, r.t + 0.1)
- def test_concurrent_ok(self):
- f = lambda t, y: 1.0
- for k in range(3):
- for sol in ('vode', 'zvode', 'lsoda', 'dopri5', 'dop853'):
- r = ode(f).set_integrator(sol)
- r.set_initial_value(0, 0)
- r2 = ode(f).set_integrator(sol)
- r2.set_initial_value(0, 0)
- r.integrate(r.t + 0.1)
- r2.integrate(r2.t + 0.1)
- r2.integrate(r2.t + 0.1)
- assert_allclose(r.y, 0.1)
- assert_allclose(r2.y, 0.2)
- for sol in ('dopri5', 'dop853'):
- r = ode(f).set_integrator(sol)
- r.set_initial_value(0, 0)
- r2 = ode(f).set_integrator(sol)
- r2.set_initial_value(0, 0)
- r.integrate(r.t + 0.1)
- r.integrate(r.t + 0.1)
- r2.integrate(r2.t + 0.1)
- r.integrate(r.t + 0.1)
- r2.integrate(r2.t + 0.1)
- assert_allclose(r.y, 0.3)
- assert_allclose(r2.y, 0.2)
- class TestComplexOde(TestODEClass):
- ode_class = complex_ode
- def test_vode(self):
- # Check the vode solver
- for problem_cls in PROBLEMS:
- problem = problem_cls()
- if not problem.stiff:
- self._do_problem(problem, 'vode', 'adams')
- else:
- self._do_problem(problem, 'vode', 'bdf')
- def test_lsoda(self):
- # Check the lsoda solver
- for problem_cls in PROBLEMS:
- problem = problem_cls()
- self._do_problem(problem, 'lsoda')
- def test_dopri5(self):
- # Check the dopri5 solver
- for problem_cls in PROBLEMS:
- problem = problem_cls()
- if problem.stiff:
- continue
- if hasattr(problem, 'jac'):
- continue
- self._do_problem(problem, 'dopri5')
- def test_dop853(self):
- # Check the dop853 solver
- for problem_cls in PROBLEMS:
- problem = problem_cls()
- if problem.stiff:
- continue
- if hasattr(problem, 'jac'):
- continue
- self._do_problem(problem, 'dop853')
- class TestSolout:
- # Check integrate.ode correctly handles solout for dopri5 and dop853
- def _run_solout_test(self, integrator):
- # Check correct usage of solout
- ts = []
- ys = []
- t0 = 0.0
- tend = 10.0
- y0 = [1.0, 2.0]
- def solout(t, y):
- ts.append(t)
- ys.append(y.copy())
- def rhs(t, y):
- return [y[0] + y[1], -y[1]**2]
- ig = ode(rhs).set_integrator(integrator)
- ig.set_solout(solout)
- ig.set_initial_value(y0, t0)
- ret = ig.integrate(tend)
- assert_array_equal(ys[0], y0)
- assert_array_equal(ys[-1], ret)
- assert_equal(ts[0], t0)
- assert_equal(ts[-1], tend)
- def test_solout(self):
- for integrator in ('dopri5', 'dop853'):
- self._run_solout_test(integrator)
- def _run_solout_after_initial_test(self, integrator):
- # Check if solout works even if it is set after the initial value.
- ts = []
- ys = []
- t0 = 0.0
- tend = 10.0
- y0 = [1.0, 2.0]
- def solout(t, y):
- ts.append(t)
- ys.append(y.copy())
- def rhs(t, y):
- return [y[0] + y[1], -y[1]**2]
- ig = ode(rhs).set_integrator(integrator)
- ig.set_initial_value(y0, t0)
- ig.set_solout(solout)
- ret = ig.integrate(tend)
- assert_array_equal(ys[0], y0)
- assert_array_equal(ys[-1], ret)
- assert_equal(ts[0], t0)
- assert_equal(ts[-1], tend)
- def test_solout_after_initial(self):
- for integrator in ('dopri5', 'dop853'):
- self._run_solout_after_initial_test(integrator)
- def _run_solout_break_test(self, integrator):
- # Check correct usage of stopping via solout
- ts = []
- ys = []
- t0 = 0.0
- tend = 10.0
- y0 = [1.0, 2.0]
- def solout(t, y):
- ts.append(t)
- ys.append(y.copy())
- if t > tend/2.0:
- return -1
- def rhs(t, y):
- return [y[0] + y[1], -y[1]**2]
- ig = ode(rhs).set_integrator(integrator)
- ig.set_solout(solout)
- ig.set_initial_value(y0, t0)
- ret = ig.integrate(tend)
- assert_array_equal(ys[0], y0)
- assert_array_equal(ys[-1], ret)
- assert_equal(ts[0], t0)
- assert_(ts[-1] > tend/2.0)
- assert_(ts[-1] < tend)
- def test_solout_break(self):
- for integrator in ('dopri5', 'dop853'):
- self._run_solout_break_test(integrator)
- class TestComplexSolout:
- # Check integrate.ode correctly handles solout for dopri5 and dop853
- def _run_solout_test(self, integrator):
- # Check correct usage of solout
- ts = []
- ys = []
- t0 = 0.0
- tend = 20.0
- y0 = [0.0]
- def solout(t, y):
- ts.append(t)
- ys.append(y.copy())
- def rhs(t, y):
- return [1.0/(t - 10.0 - 1j)]
- ig = complex_ode(rhs).set_integrator(integrator)
- ig.set_solout(solout)
- ig.set_initial_value(y0, t0)
- ret = ig.integrate(tend)
- assert_array_equal(ys[0], y0)
- assert_array_equal(ys[-1], ret)
- assert_equal(ts[0], t0)
- assert_equal(ts[-1], tend)
- def test_solout(self):
- for integrator in ('dopri5', 'dop853'):
- self._run_solout_test(integrator)
- def _run_solout_break_test(self, integrator):
- # Check correct usage of stopping via solout
- ts = []
- ys = []
- t0 = 0.0
- tend = 20.0
- y0 = [0.0]
- def solout(t, y):
- ts.append(t)
- ys.append(y.copy())
- if t > tend/2.0:
- return -1
- def rhs(t, y):
- return [1.0/(t - 10.0 - 1j)]
- ig = complex_ode(rhs).set_integrator(integrator)
- ig.set_solout(solout)
- ig.set_initial_value(y0, t0)
- ret = ig.integrate(tend)
- assert_array_equal(ys[0], y0)
- assert_array_equal(ys[-1], ret)
- assert_equal(ts[0], t0)
- assert_(ts[-1] > tend/2.0)
- assert_(ts[-1] < tend)
- def test_solout_break(self):
- for integrator in ('dopri5', 'dop853'):
- self._run_solout_break_test(integrator)
- #------------------------------------------------------------------------------
- # Test problems
- #------------------------------------------------------------------------------
- class ODE:
- """
- ODE problem
- """
- stiff = False
- cmplx = False
- stop_t = 1
- z0 = []
- lband = None
- uband = None
- atol = 1e-6
- rtol = 1e-5
- class SimpleOscillator(ODE):
- r"""
- Free vibration of a simple oscillator::
- m \ddot{u} + k u = 0, u(0) = u_0 \dot{u}(0) \dot{u}_0
- Solution::
- u(t) = u_0*cos(sqrt(k/m)*t)+\dot{u}_0*sin(sqrt(k/m)*t)/sqrt(k/m)
- """
- stop_t = 1 + 0.09
- z0 = array([1.0, 0.1], float)
- k = 4.0
- m = 1.0
- def f(self, z, t):
- tmp = zeros((2, 2), float)
- tmp[0, 1] = 1.0
- tmp[1, 0] = -self.k / self.m
- return dot(tmp, z)
- def verify(self, zs, t):
- omega = sqrt(self.k / self.m)
- u = self.z0[0]*cos(omega*t) + self.z0[1]*sin(omega*t)/omega
- return allclose(u, zs[:, 0], atol=self.atol, rtol=self.rtol)
- class ComplexExp(ODE):
- r"""The equation :lm:`\dot u = i u`"""
- stop_t = 1.23*pi
- z0 = exp([1j, 2j, 3j, 4j, 5j])
- cmplx = True
- def f(self, z, t):
- return 1j*z
- def jac(self, z, t):
- return 1j*eye(5)
- def verify(self, zs, t):
- u = self.z0 * exp(1j*t)
- return allclose(u, zs, atol=self.atol, rtol=self.rtol)
- class Pi(ODE):
- r"""Integrate 1/(t + 1j) from t=-10 to t=10"""
- stop_t = 20
- z0 = [0]
- cmplx = True
- def f(self, z, t):
- return array([1./(t - 10 + 1j)])
- def verify(self, zs, t):
- u = -2j * np.arctan(10)
- return allclose(u, zs[-1, :], atol=self.atol, rtol=self.rtol)
- class CoupledDecay(ODE):
- r"""
- 3 coupled decays suited for banded treatment
- (banded mode makes it necessary when N>>3)
- """
- stiff = True
- stop_t = 0.5
- z0 = [5.0, 7.0, 13.0]
- lband = 1
- uband = 0
- lmbd = [0.17, 0.23, 0.29] # fictitious decay constants
- def f(self, z, t):
- lmbd = self.lmbd
- return np.array([-lmbd[0]*z[0],
- -lmbd[1]*z[1] + lmbd[0]*z[0],
- -lmbd[2]*z[2] + lmbd[1]*z[1]])
- def jac(self, z, t):
- # The full Jacobian is
- #
- # [-lmbd[0] 0 0 ]
- # [ lmbd[0] -lmbd[1] 0 ]
- # [ 0 lmbd[1] -lmbd[2]]
- #
- # The lower and upper bandwidths are lband=1 and uband=0, resp.
- # The representation of this array in packed format is
- #
- # [-lmbd[0] -lmbd[1] -lmbd[2]]
- # [ lmbd[0] lmbd[1] 0 ]
- lmbd = self.lmbd
- j = np.zeros((self.lband + self.uband + 1, 3), order='F')
- def set_j(ri, ci, val):
- j[self.uband + ri - ci, ci] = val
- set_j(0, 0, -lmbd[0])
- set_j(1, 0, lmbd[0])
- set_j(1, 1, -lmbd[1])
- set_j(2, 1, lmbd[1])
- set_j(2, 2, -lmbd[2])
- return j
- def verify(self, zs, t):
- # Formulae derived by hand
- lmbd = np.array(self.lmbd)
- d10 = lmbd[1] - lmbd[0]
- d21 = lmbd[2] - lmbd[1]
- d20 = lmbd[2] - lmbd[0]
- e0 = np.exp(-lmbd[0] * t)
- e1 = np.exp(-lmbd[1] * t)
- e2 = np.exp(-lmbd[2] * t)
- u = np.vstack((
- self.z0[0] * e0,
- self.z0[1] * e1 + self.z0[0] * lmbd[0] / d10 * (e0 - e1),
- self.z0[2] * e2 + self.z0[1] * lmbd[1] / d21 * (e1 - e2) +
- lmbd[1] * lmbd[0] * self.z0[0] / d10 *
- (1 / d20 * (e0 - e2) - 1 / d21 * (e1 - e2)))).transpose()
- return allclose(u, zs, atol=self.atol, rtol=self.rtol)
- PROBLEMS = [SimpleOscillator, ComplexExp, Pi, CoupledDecay]
- #------------------------------------------------------------------------------
- def f(t, x):
- dxdt = [x[1], -x[0]]
- return dxdt
- def jac(t, x):
- j = array([[0.0, 1.0],
- [-1.0, 0.0]])
- return j
- def f1(t, x, omega):
- dxdt = [omega*x[1], -omega*x[0]]
- return dxdt
- def jac1(t, x, omega):
- j = array([[0.0, omega],
- [-omega, 0.0]])
- return j
- def f2(t, x, omega1, omega2):
- dxdt = [omega1*x[1], -omega2*x[0]]
- return dxdt
- def jac2(t, x, omega1, omega2):
- j = array([[0.0, omega1],
- [-omega2, 0.0]])
- return j
- def fv(t, x, omega):
- dxdt = [omega[0]*x[1], -omega[1]*x[0]]
- return dxdt
- def jacv(t, x, omega):
- j = array([[0.0, omega[0]],
- [-omega[1], 0.0]])
- return j
- class ODECheckParameterUse:
- """Call an ode-class solver with several cases of parameter use."""
- # solver_name must be set before tests can be run with this class.
- # Set these in subclasses.
- solver_name = ''
- solver_uses_jac = False
- def _get_solver(self, f, jac):
- solver = ode(f, jac)
- if self.solver_uses_jac:
- solver.set_integrator(self.solver_name, atol=1e-9, rtol=1e-7,
- with_jacobian=self.solver_uses_jac)
- else:
- # XXX Shouldn't set_integrator *always* accept the keyword arg
- # 'with_jacobian', and perhaps raise an exception if it is set
- # to True if the solver can't actually use it?
- solver.set_integrator(self.solver_name, atol=1e-9, rtol=1e-7)
- return solver
- def _check_solver(self, solver):
- ic = [1.0, 0.0]
- solver.set_initial_value(ic, 0.0)
- solver.integrate(pi)
- assert_array_almost_equal(solver.y, [-1.0, 0.0])
- def test_no_params(self):
- solver = self._get_solver(f, jac)
- self._check_solver(solver)
- def test_one_scalar_param(self):
- solver = self._get_solver(f1, jac1)
- omega = 1.0
- solver.set_f_params(omega)
- if self.solver_uses_jac:
- solver.set_jac_params(omega)
- self._check_solver(solver)
- def test_two_scalar_params(self):
- solver = self._get_solver(f2, jac2)
- omega1 = 1.0
- omega2 = 1.0
- solver.set_f_params(omega1, omega2)
- if self.solver_uses_jac:
- solver.set_jac_params(omega1, omega2)
- self._check_solver(solver)
- def test_vector_param(self):
- solver = self._get_solver(fv, jacv)
- omega = [1.0, 1.0]
- solver.set_f_params(omega)
- if self.solver_uses_jac:
- solver.set_jac_params(omega)
- self._check_solver(solver)
- def test_warns_on_failure(self):
- # Set nsteps small to ensure failure
- solver = self._get_solver(f, jac)
- solver.set_integrator(self.solver_name, nsteps=1)
- ic = [1.0, 0.0]
- solver.set_initial_value(ic, 0.0)
- assert_warns(UserWarning, solver.integrate, pi)
- class TestDOPRI5CheckParameterUse(ODECheckParameterUse):
- solver_name = 'dopri5'
- solver_uses_jac = False
- class TestDOP853CheckParameterUse(ODECheckParameterUse):
- solver_name = 'dop853'
- solver_uses_jac = False
- class TestVODECheckParameterUse(ODECheckParameterUse):
- solver_name = 'vode'
- solver_uses_jac = True
- class TestZVODECheckParameterUse(ODECheckParameterUse):
- solver_name = 'zvode'
- solver_uses_jac = True
- class TestLSODACheckParameterUse(ODECheckParameterUse):
- solver_name = 'lsoda'
- solver_uses_jac = True
- def test_odeint_trivial_time():
- # Test that odeint succeeds when given a single time point
- # and full_output=True. This is a regression test for gh-4282.
- y0 = 1
- t = [0]
- y, info = odeint(lambda y, t: -y, y0, t, full_output=True)
- assert_array_equal(y, np.array([[y0]]))
- def test_odeint_banded_jacobian():
- # Test the use of the `Dfun`, `ml` and `mu` options of odeint.
- def func(y, t, c):
- return c.dot(y)
- def jac(y, t, c):
- return c
- def jac_transpose(y, t, c):
- return c.T.copy(order='C')
- def bjac_rows(y, t, c):
- jac = np.row_stack((np.r_[0, np.diag(c, 1)],
- np.diag(c),
- np.r_[np.diag(c, -1), 0],
- np.r_[np.diag(c, -2), 0, 0]))
- return jac
- def bjac_cols(y, t, c):
- return bjac_rows(y, t, c).T.copy(order='C')
- c = array([[-205, 0.01, 0.00, 0.0],
- [0.1, -2.50, 0.02, 0.0],
- [1e-3, 0.01, -2.0, 0.01],
- [0.00, 0.00, 0.1, -1.0]])
- y0 = np.ones(4)
- t = np.array([0, 5, 10, 100])
- # Use the full Jacobian.
- sol1, info1 = odeint(func, y0, t, args=(c,), full_output=True,
- atol=1e-13, rtol=1e-11, mxstep=10000,
- Dfun=jac)
- # Use the transposed full Jacobian, with col_deriv=True.
- sol2, info2 = odeint(func, y0, t, args=(c,), full_output=True,
- atol=1e-13, rtol=1e-11, mxstep=10000,
- Dfun=jac_transpose, col_deriv=True)
- # Use the banded Jacobian.
- sol3, info3 = odeint(func, y0, t, args=(c,), full_output=True,
- atol=1e-13, rtol=1e-11, mxstep=10000,
- Dfun=bjac_rows, ml=2, mu=1)
- # Use the transposed banded Jacobian, with col_deriv=True.
- sol4, info4 = odeint(func, y0, t, args=(c,), full_output=True,
- atol=1e-13, rtol=1e-11, mxstep=10000,
- Dfun=bjac_cols, ml=2, mu=1, col_deriv=True)
- assert_allclose(sol1, sol2, err_msg="sol1 != sol2")
- assert_allclose(sol1, sol3, atol=1e-12, err_msg="sol1 != sol3")
- assert_allclose(sol3, sol4, err_msg="sol3 != sol4")
- # Verify that the number of jacobian evaluations was the same for the
- # calls of odeint with a full jacobian and with a banded jacobian. This is
- # a regression test--there was a bug in the handling of banded jacobians
- # that resulted in an incorrect jacobian matrix being passed to the LSODA
- # code. That would cause errors or excessive jacobian evaluations.
- assert_array_equal(info1['nje'], info2['nje'])
- assert_array_equal(info3['nje'], info4['nje'])
- # Test the use of tfirst
- sol1ty, info1ty = odeint(lambda t, y, c: func(y, t, c), y0, t, args=(c,),
- full_output=True, atol=1e-13, rtol=1e-11,
- mxstep=10000,
- Dfun=lambda t, y, c: jac(y, t, c), tfirst=True)
- # The code should execute the exact same sequence of floating point
- # calculations, so these should be exactly equal. We'll be safe and use
- # a small tolerance.
- assert_allclose(sol1, sol1ty, rtol=1e-12, err_msg="sol1 != sol1ty")
- def test_odeint_errors():
- def sys1d(x, t):
- return -100*x
- def bad1(x, t):
- return 1.0/0
- def bad2(x, t):
- return "foo"
- def bad_jac1(x, t):
- return 1.0/0
- def bad_jac2(x, t):
- return [["foo"]]
- def sys2d(x, t):
- return [-100*x[0], -0.1*x[1]]
- def sys2d_bad_jac(x, t):
- return [[1.0/0, 0], [0, -0.1]]
- assert_raises(ZeroDivisionError, odeint, bad1, 1.0, [0, 1])
- assert_raises(ValueError, odeint, bad2, 1.0, [0, 1])
- assert_raises(ZeroDivisionError, odeint, sys1d, 1.0, [0, 1], Dfun=bad_jac1)
- assert_raises(ValueError, odeint, sys1d, 1.0, [0, 1], Dfun=bad_jac2)
- assert_raises(ZeroDivisionError, odeint, sys2d, [1.0, 1.0], [0, 1],
- Dfun=sys2d_bad_jac)
- def test_odeint_bad_shapes():
- # Tests of some errors that can occur with odeint.
- def badrhs(x, t):
- return [1, -1]
- def sys1(x, t):
- return -100*x
- def badjac(x, t):
- return [[0, 0, 0]]
- # y0 must be at most 1-d.
- bad_y0 = [[0, 0], [0, 0]]
- assert_raises(ValueError, odeint, sys1, bad_y0, [0, 1])
- # t must be at most 1-d.
- bad_t = [[0, 1], [2, 3]]
- assert_raises(ValueError, odeint, sys1, [10.0], bad_t)
- # y0 is 10, but badrhs(x, t) returns [1, -1].
- assert_raises(RuntimeError, odeint, badrhs, 10, [0, 1])
- # shape of array returned by badjac(x, t) is not correct.
- assert_raises(RuntimeError, odeint, sys1, [10, 10], [0, 1], Dfun=badjac)
- def test_repeated_t_values():
- """Regression test for gh-8217."""
- def func(x, t):
- return -0.25*x
- t = np.zeros(10)
- sol = odeint(func, [1.], t)
- assert_array_equal(sol, np.ones((len(t), 1)))
- tau = 4*np.log(2)
- t = [0]*9 + [tau, 2*tau, 2*tau, 3*tau]
- sol = odeint(func, [1, 2], t, rtol=1e-12, atol=1e-12)
- expected_sol = np.array([[1.0, 2.0]]*9 +
- [[0.5, 1.0],
- [0.25, 0.5],
- [0.25, 0.5],
- [0.125, 0.25]])
- assert_allclose(sol, expected_sol)
- # Edge case: empty t sequence.
- sol = odeint(func, [1.], [])
- assert_array_equal(sol, np.array([], dtype=np.float64).reshape((0, 1)))
- # t values are not monotonic.
- assert_raises(ValueError, odeint, func, [1.], [0, 1, 0.5, 0])
- assert_raises(ValueError, odeint, func, [1, 2, 3], [0, -1, -2, 3])
|