123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709 |
- import sys
- try:
- from StringIO import StringIO
- except ImportError:
- from io import StringIO
- import numpy as np
- from numpy.testing import (assert_, assert_array_equal, assert_allclose,
- assert_equal)
- from pytest import raises as assert_raises
- from scipy.sparse import coo_matrix
- from scipy.special import erf
- from scipy.integrate._bvp import (modify_mesh, estimate_fun_jac,
- estimate_bc_jac, compute_jac_indices,
- construct_global_jac, solve_bvp)
- def exp_fun(x, y):
- return np.vstack((y[1], y[0]))
- def exp_fun_jac(x, y):
- df_dy = np.empty((2, 2, x.shape[0]))
- df_dy[0, 0] = 0
- df_dy[0, 1] = 1
- df_dy[1, 0] = 1
- df_dy[1, 1] = 0
- return df_dy
- def exp_bc(ya, yb):
- return np.hstack((ya[0] - 1, yb[0]))
- def exp_bc_complex(ya, yb):
- return np.hstack((ya[0] - 1 - 1j, yb[0]))
- def exp_bc_jac(ya, yb):
- dbc_dya = np.array([
- [1, 0],
- [0, 0]
- ])
- dbc_dyb = np.array([
- [0, 0],
- [1, 0]
- ])
- return dbc_dya, dbc_dyb
- def exp_sol(x):
- return (np.exp(-x) - np.exp(x - 2)) / (1 - np.exp(-2))
- def sl_fun(x, y, p):
- return np.vstack((y[1], -p[0]**2 * y[0]))
- def sl_fun_jac(x, y, p):
- n, m = y.shape
- df_dy = np.empty((n, 2, m))
- df_dy[0, 0] = 0
- df_dy[0, 1] = 1
- df_dy[1, 0] = -p[0]**2
- df_dy[1, 1] = 0
- df_dp = np.empty((n, 1, m))
- df_dp[0, 0] = 0
- df_dp[1, 0] = -2 * p[0] * y[0]
- return df_dy, df_dp
- def sl_bc(ya, yb, p):
- return np.hstack((ya[0], yb[0], ya[1] - p[0]))
- def sl_bc_jac(ya, yb, p):
- dbc_dya = np.zeros((3, 2))
- dbc_dya[0, 0] = 1
- dbc_dya[2, 1] = 1
- dbc_dyb = np.zeros((3, 2))
- dbc_dyb[1, 0] = 1
- dbc_dp = np.zeros((3, 1))
- dbc_dp[2, 0] = -1
- return dbc_dya, dbc_dyb, dbc_dp
- def sl_sol(x, p):
- return np.sin(p[0] * x)
- def emden_fun(x, y):
- return np.vstack((y[1], -y[0]**5))
- def emden_fun_jac(x, y):
- df_dy = np.empty((2, 2, x.shape[0]))
- df_dy[0, 0] = 0
- df_dy[0, 1] = 1
- df_dy[1, 0] = -5 * y[0]**4
- df_dy[1, 1] = 0
- return df_dy
- def emden_bc(ya, yb):
- return np.array([ya[1], yb[0] - (3/4)**0.5])
- def emden_bc_jac(ya, yb):
- dbc_dya = np.array([
- [0, 1],
- [0, 0]
- ])
- dbc_dyb = np.array([
- [0, 0],
- [1, 0]
- ])
- return dbc_dya, dbc_dyb
- def emden_sol(x):
- return (1 + x**2/3)**-0.5
- def undefined_fun(x, y):
- return np.zeros_like(y)
- def undefined_bc(ya, yb):
- return np.array([ya[0], yb[0] - 1])
- def big_fun(x, y):
- f = np.zeros_like(y)
- f[::2] = y[1::2]
- return f
- def big_bc(ya, yb):
- return np.hstack((ya[::2], yb[::2] - 1))
- def big_sol(x, n):
- y = np.ones((2 * n, x.size))
- y[::2] = x
- return x
- def big_fun_with_parameters(x, y, p):
- """ Big version of sl_fun, with two parameters.
- The two differential equations represented by sl_fun are broadcast to the
- number of rows of y, rotating between the parameters p[0] and p[1].
- Here are the differential equations:
- dy[0]/dt = y[1]
- dy[1]/dt = -p[0]**2 * y[0]
- dy[2]/dt = y[3]
- dy[3]/dt = -p[1]**2 * y[2]
- dy[4]/dt = y[5]
- dy[5]/dt = -p[0]**2 * y[4]
- dy[6]/dt = y[7]
- dy[7]/dt = -p[1]**2 * y[6]
- .
- .
- .
- """
- f = np.zeros_like(y)
- f[::2] = y[1::2]
- f[1::4] = -p[0]**2 * y[::4]
- f[3::4] = -p[1]**2 * y[2::4]
- return f
- def big_fun_with_parameters_jac(x, y, p):
- # big version of sl_fun_jac, with two parameters
- n, m = y.shape
- df_dy = np.zeros((n, n, m))
- df_dy[range(0, n, 2), range(1, n, 2)] = 1
- df_dy[range(1, n, 4), range(0, n, 4)] = -p[0]**2
- df_dy[range(3, n, 4), range(2, n, 4)] = -p[1]**2
- df_dp = np.zeros((n, 2, m))
- df_dp[range(1, n, 4), 0] = -2 * p[0] * y[range(0, n, 4)]
- df_dp[range(3, n, 4), 1] = -2 * p[1] * y[range(2, n, 4)]
- return df_dy, df_dp
- def big_bc_with_parameters(ya, yb, p):
- # big version of sl_bc, with two parameters
- return np.hstack((ya[::2], yb[::2], ya[1] - p[0], ya[3] - p[1]))
- def big_bc_with_parameters_jac(ya, yb, p):
- # big version of sl_bc_jac, with two parameters
- n = ya.shape[0]
- dbc_dya = np.zeros((n + 2, n))
- dbc_dyb = np.zeros((n + 2, n))
- dbc_dya[range(n // 2), range(0, n, 2)] = 1
- dbc_dyb[range(n // 2, n), range(0, n, 2)] = 1
- dbc_dp = np.zeros((n + 2, 2))
- dbc_dp[n, 0] = -1
- dbc_dya[n, 1] = 1
- dbc_dp[n + 1, 1] = -1
- dbc_dya[n + 1, 3] = 1
- return dbc_dya, dbc_dyb, dbc_dp
- def big_sol_with_parameters(x, p):
- # big version of sl_sol, with two parameters
- return np.vstack((np.sin(p[0] * x), np.sin(p[1] * x)))
- def shock_fun(x, y):
- eps = 1e-3
- return np.vstack((
- y[1],
- -(x * y[1] + eps * np.pi**2 * np.cos(np.pi * x) +
- np.pi * x * np.sin(np.pi * x)) / eps
- ))
- def shock_bc(ya, yb):
- return np.array([ya[0] + 2, yb[0]])
- def shock_sol(x):
- eps = 1e-3
- k = np.sqrt(2 * eps)
- return np.cos(np.pi * x) + erf(x / k) / erf(1 / k)
- def nonlin_bc_fun(x, y):
- # laplace eq.
- return np.stack([y[1], np.zeros_like(x)])
- def nonlin_bc_bc(ya, yb):
- phiA, phipA = ya
- phiC, phipC = yb
- kappa, ioA, ioC, V, f = 1.64, 0.01, 1.0e-4, 0.5, 38.9
- # Butler-Volmer Kinetics at Anode
- hA = 0.0-phiA-0.0
- iA = ioA * (np.exp(f*hA) - np.exp(-f*hA))
- res0 = iA + kappa * phipA
- # Butler-Volmer Kinetics at Cathode
- hC = V - phiC - 1.0
- iC = ioC * (np.exp(f*hC) - np.exp(-f*hC))
- res1 = iC - kappa*phipC
- return np.array([res0, res1])
- def nonlin_bc_sol(x):
- return -0.13426436116763119 - 1.1308709 * x
- def test_modify_mesh():
- x = np.array([0, 1, 3, 9], dtype=float)
- x_new = modify_mesh(x, np.array([0]), np.array([2]))
- assert_array_equal(x_new, np.array([0, 0.5, 1, 3, 5, 7, 9]))
- x = np.array([-6, -3, 0, 3, 6], dtype=float)
- x_new = modify_mesh(x, np.array([1], dtype=int), np.array([0, 2, 3]))
- assert_array_equal(x_new, [-6, -5, -4, -3, -1.5, 0, 1, 2, 3, 4, 5, 6])
- def test_compute_fun_jac():
- x = np.linspace(0, 1, 5)
- y = np.empty((2, x.shape[0]))
- y[0] = 0.01
- y[1] = 0.02
- p = np.array([])
- df_dy, df_dp = estimate_fun_jac(lambda x, y, p: exp_fun(x, y), x, y, p)
- df_dy_an = exp_fun_jac(x, y)
- assert_allclose(df_dy, df_dy_an)
- assert_(df_dp is None)
- x = np.linspace(0, np.pi, 5)
- y = np.empty((2, x.shape[0]))
- y[0] = np.sin(x)
- y[1] = np.cos(x)
- p = np.array([1.0])
- df_dy, df_dp = estimate_fun_jac(sl_fun, x, y, p)
- df_dy_an, df_dp_an = sl_fun_jac(x, y, p)
- assert_allclose(df_dy, df_dy_an)
- assert_allclose(df_dp, df_dp_an)
- x = np.linspace(0, 1, 10)
- y = np.empty((2, x.shape[0]))
- y[0] = (3/4)**0.5
- y[1] = 1e-4
- p = np.array([])
- df_dy, df_dp = estimate_fun_jac(lambda x, y, p: emden_fun(x, y), x, y, p)
- df_dy_an = emden_fun_jac(x, y)
- assert_allclose(df_dy, df_dy_an)
- assert_(df_dp is None)
- def test_compute_bc_jac():
- ya = np.array([-1.0, 2])
- yb = np.array([0.5, 3])
- p = np.array([])
- dbc_dya, dbc_dyb, dbc_dp = estimate_bc_jac(
- lambda ya, yb, p: exp_bc(ya, yb), ya, yb, p)
- dbc_dya_an, dbc_dyb_an = exp_bc_jac(ya, yb)
- assert_allclose(dbc_dya, dbc_dya_an)
- assert_allclose(dbc_dyb, dbc_dyb_an)
- assert_(dbc_dp is None)
- ya = np.array([0.0, 1])
- yb = np.array([0.0, -1])
- p = np.array([0.5])
- dbc_dya, dbc_dyb, dbc_dp = estimate_bc_jac(sl_bc, ya, yb, p)
- dbc_dya_an, dbc_dyb_an, dbc_dp_an = sl_bc_jac(ya, yb, p)
- assert_allclose(dbc_dya, dbc_dya_an)
- assert_allclose(dbc_dyb, dbc_dyb_an)
- assert_allclose(dbc_dp, dbc_dp_an)
- ya = np.array([0.5, 100])
- yb = np.array([-1000, 10.5])
- p = np.array([])
- dbc_dya, dbc_dyb, dbc_dp = estimate_bc_jac(
- lambda ya, yb, p: emden_bc(ya, yb), ya, yb, p)
- dbc_dya_an, dbc_dyb_an = emden_bc_jac(ya, yb)
- assert_allclose(dbc_dya, dbc_dya_an)
- assert_allclose(dbc_dyb, dbc_dyb_an)
- assert_(dbc_dp is None)
- def test_compute_jac_indices():
- n = 2
- m = 4
- k = 2
- i, j = compute_jac_indices(n, m, k)
- s = coo_matrix((np.ones_like(i), (i, j))).toarray()
- s_true = np.array([
- [1, 1, 1, 1, 0, 0, 0, 0, 1, 1],
- [1, 1, 1, 1, 0, 0, 0, 0, 1, 1],
- [0, 0, 1, 1, 1, 1, 0, 0, 1, 1],
- [0, 0, 1, 1, 1, 1, 0, 0, 1, 1],
- [0, 0, 0, 0, 1, 1, 1, 1, 1, 1],
- [0, 0, 0, 0, 1, 1, 1, 1, 1, 1],
- [1, 1, 0, 0, 0, 0, 1, 1, 1, 1],
- [1, 1, 0, 0, 0, 0, 1, 1, 1, 1],
- [1, 1, 0, 0, 0, 0, 1, 1, 1, 1],
- [1, 1, 0, 0, 0, 0, 1, 1, 1, 1],
- ])
- assert_array_equal(s, s_true)
- def test_compute_global_jac():
- n = 2
- m = 5
- k = 1
- i_jac, j_jac = compute_jac_indices(2, 5, 1)
- x = np.linspace(0, 1, 5)
- h = np.diff(x)
- y = np.vstack((np.sin(np.pi * x), np.pi * np.cos(np.pi * x)))
- p = np.array([3.0])
- f = sl_fun(x, y, p)
- x_middle = x[:-1] + 0.5 * h
- y_middle = 0.5 * (y[:, :-1] + y[:, 1:]) - h/8 * (f[:, 1:] - f[:, :-1])
- df_dy, df_dp = sl_fun_jac(x, y, p)
- df_dy_middle, df_dp_middle = sl_fun_jac(x_middle, y_middle, p)
- dbc_dya, dbc_dyb, dbc_dp = sl_bc_jac(y[:, 0], y[:, -1], p)
- J = construct_global_jac(n, m, k, i_jac, j_jac, h, df_dy, df_dy_middle,
- df_dp, df_dp_middle, dbc_dya, dbc_dyb, dbc_dp)
- J = J.toarray()
- def J_block(h, p):
- return np.array([
- [h**2*p**2/12 - 1, -0.5*h, -h**2*p**2/12 + 1, -0.5*h],
- [0.5*h*p**2, h**2*p**2/12 - 1, 0.5*h*p**2, 1 - h**2*p**2/12]
- ])
- J_true = np.zeros((m * n + k, m * n + k))
- for i in range(m - 1):
- J_true[i * n: (i + 1) * n, i * n: (i + 2) * n] = J_block(h[i], p[0])
- J_true[:(m - 1) * n:2, -1] = p * h**2/6 * (y[0, :-1] - y[0, 1:])
- J_true[1:(m - 1) * n:2, -1] = p * (h * (y[0, :-1] + y[0, 1:]) +
- h**2/6 * (y[1, :-1] - y[1, 1:]))
- J_true[8, 0] = 1
- J_true[9, 8] = 1
- J_true[10, 1] = 1
- J_true[10, 10] = -1
- assert_allclose(J, J_true, rtol=1e-10)
- df_dy, df_dp = estimate_fun_jac(sl_fun, x, y, p)
- df_dy_middle, df_dp_middle = estimate_fun_jac(sl_fun, x_middle, y_middle, p)
- dbc_dya, dbc_dyb, dbc_dp = estimate_bc_jac(sl_bc, y[:, 0], y[:, -1], p)
- J = construct_global_jac(n, m, k, i_jac, j_jac, h, df_dy, df_dy_middle,
- df_dp, df_dp_middle, dbc_dya, dbc_dyb, dbc_dp)
- J = J.toarray()
- assert_allclose(J, J_true, rtol=2e-8, atol=2e-8)
- def test_parameter_validation():
- x = [0, 1, 0.5]
- y = np.zeros((2, 3))
- assert_raises(ValueError, solve_bvp, exp_fun, exp_bc, x, y)
- x = np.linspace(0, 1, 5)
- y = np.zeros((2, 4))
- assert_raises(ValueError, solve_bvp, exp_fun, exp_bc, x, y)
- fun = lambda x, y, p: exp_fun(x, y)
- bc = lambda ya, yb, p: exp_bc(ya, yb)
- y = np.zeros((2, x.shape[0]))
- assert_raises(ValueError, solve_bvp, fun, bc, x, y, p=[1])
- def wrong_shape_fun(x, y):
- return np.zeros(3)
- assert_raises(ValueError, solve_bvp, wrong_shape_fun, bc, x, y)
- S = np.array([[0, 0]])
- assert_raises(ValueError, solve_bvp, exp_fun, exp_bc, x, y, S=S)
- def test_no_params():
- x = np.linspace(0, 1, 5)
- x_test = np.linspace(0, 1, 100)
- y = np.zeros((2, x.shape[0]))
- for fun_jac in [None, exp_fun_jac]:
- for bc_jac in [None, exp_bc_jac]:
- sol = solve_bvp(exp_fun, exp_bc, x, y, fun_jac=fun_jac,
- bc_jac=bc_jac)
- assert_equal(sol.status, 0)
- assert_(sol.success)
- assert_equal(sol.x.size, 5)
- sol_test = sol.sol(x_test)
- assert_allclose(sol_test[0], exp_sol(x_test), atol=1e-5)
- f_test = exp_fun(x_test, sol_test)
- r = sol.sol(x_test, 1) - f_test
- rel_res = r / (1 + np.abs(f_test))
- norm_res = np.sum(rel_res**2, axis=0)**0.5
- assert_(np.all(norm_res < 1e-3))
- assert_(np.all(sol.rms_residuals < 1e-3))
- assert_allclose(sol.sol(sol.x), sol.y, rtol=1e-10, atol=1e-10)
- assert_allclose(sol.sol(sol.x, 1), sol.yp, rtol=1e-10, atol=1e-10)
- def test_with_params():
- x = np.linspace(0, np.pi, 5)
- x_test = np.linspace(0, np.pi, 100)
- y = np.ones((2, x.shape[0]))
- for fun_jac in [None, sl_fun_jac]:
- for bc_jac in [None, sl_bc_jac]:
- sol = solve_bvp(sl_fun, sl_bc, x, y, p=[0.5], fun_jac=fun_jac,
- bc_jac=bc_jac)
- assert_equal(sol.status, 0)
- assert_(sol.success)
- assert_(sol.x.size < 10)
- assert_allclose(sol.p, [1], rtol=1e-4)
- sol_test = sol.sol(x_test)
- assert_allclose(sol_test[0], sl_sol(x_test, [1]),
- rtol=1e-4, atol=1e-4)
- f_test = sl_fun(x_test, sol_test, [1])
- r = sol.sol(x_test, 1) - f_test
- rel_res = r / (1 + np.abs(f_test))
- norm_res = np.sum(rel_res ** 2, axis=0) ** 0.5
- assert_(np.all(norm_res < 1e-3))
- assert_(np.all(sol.rms_residuals < 1e-3))
- assert_allclose(sol.sol(sol.x), sol.y, rtol=1e-10, atol=1e-10)
- assert_allclose(sol.sol(sol.x, 1), sol.yp, rtol=1e-10, atol=1e-10)
- def test_singular_term():
- x = np.linspace(0, 1, 10)
- x_test = np.linspace(0.05, 1, 100)
- y = np.empty((2, 10))
- y[0] = (3/4)**0.5
- y[1] = 1e-4
- S = np.array([[0, 0], [0, -2]])
- for fun_jac in [None, emden_fun_jac]:
- for bc_jac in [None, emden_bc_jac]:
- sol = solve_bvp(emden_fun, emden_bc, x, y, S=S, fun_jac=fun_jac,
- bc_jac=bc_jac)
- assert_equal(sol.status, 0)
- assert_(sol.success)
- assert_equal(sol.x.size, 10)
- sol_test = sol.sol(x_test)
- assert_allclose(sol_test[0], emden_sol(x_test), atol=1e-5)
- f_test = emden_fun(x_test, sol_test) + S.dot(sol_test) / x_test
- r = sol.sol(x_test, 1) - f_test
- rel_res = r / (1 + np.abs(f_test))
- norm_res = np.sum(rel_res ** 2, axis=0) ** 0.5
- assert_(np.all(norm_res < 1e-3))
- assert_allclose(sol.sol(sol.x), sol.y, rtol=1e-10, atol=1e-10)
- assert_allclose(sol.sol(sol.x, 1), sol.yp, rtol=1e-10, atol=1e-10)
- def test_complex():
- # The test is essentially the same as test_no_params, but boundary
- # conditions are turned into complex.
- x = np.linspace(0, 1, 5)
- x_test = np.linspace(0, 1, 100)
- y = np.zeros((2, x.shape[0]), dtype=complex)
- for fun_jac in [None, exp_fun_jac]:
- for bc_jac in [None, exp_bc_jac]:
- sol = solve_bvp(exp_fun, exp_bc_complex, x, y, fun_jac=fun_jac,
- bc_jac=bc_jac)
- assert_equal(sol.status, 0)
- assert_(sol.success)
- sol_test = sol.sol(x_test)
- assert_allclose(sol_test[0].real, exp_sol(x_test), atol=1e-5)
- assert_allclose(sol_test[0].imag, exp_sol(x_test), atol=1e-5)
- f_test = exp_fun(x_test, sol_test)
- r = sol.sol(x_test, 1) - f_test
- rel_res = r / (1 + np.abs(f_test))
- norm_res = np.sum(np.real(rel_res * np.conj(rel_res)),
- axis=0) ** 0.5
- assert_(np.all(norm_res < 1e-3))
- assert_(np.all(sol.rms_residuals < 1e-3))
- assert_allclose(sol.sol(sol.x), sol.y, rtol=1e-10, atol=1e-10)
- assert_allclose(sol.sol(sol.x, 1), sol.yp, rtol=1e-10, atol=1e-10)
- def test_failures():
- x = np.linspace(0, 1, 2)
- y = np.zeros((2, x.size))
- res = solve_bvp(exp_fun, exp_bc, x, y, tol=1e-5, max_nodes=5)
- assert_equal(res.status, 1)
- assert_(not res.success)
- x = np.linspace(0, 1, 5)
- y = np.zeros((2, x.size))
- res = solve_bvp(undefined_fun, undefined_bc, x, y)
- assert_equal(res.status, 2)
- assert_(not res.success)
- def test_big_problem():
- n = 30
- x = np.linspace(0, 1, 5)
- y = np.zeros((2 * n, x.size))
- sol = solve_bvp(big_fun, big_bc, x, y)
- assert_equal(sol.status, 0)
- assert_(sol.success)
- sol_test = sol.sol(x)
- assert_allclose(sol_test[0], big_sol(x, n))
- f_test = big_fun(x, sol_test)
- r = sol.sol(x, 1) - f_test
- rel_res = r / (1 + np.abs(f_test))
- norm_res = np.sum(np.real(rel_res * np.conj(rel_res)), axis=0) ** 0.5
- assert_(np.all(norm_res < 1e-3))
- assert_(np.all(sol.rms_residuals < 1e-3))
- assert_allclose(sol.sol(sol.x), sol.y, rtol=1e-10, atol=1e-10)
- assert_allclose(sol.sol(sol.x, 1), sol.yp, rtol=1e-10, atol=1e-10)
- def test_big_problem_with_parameters():
- n = 30
- x = np.linspace(0, np.pi, 5)
- x_test = np.linspace(0, np.pi, 100)
- y = np.ones((2 * n, x.size))
- for fun_jac in [None, big_fun_with_parameters_jac]:
- for bc_jac in [None, big_bc_with_parameters_jac]:
- sol = solve_bvp(big_fun_with_parameters, big_bc_with_parameters, x,
- y, p=[0.5, 0.5], fun_jac=fun_jac, bc_jac=bc_jac)
- assert_equal(sol.status, 0)
- assert_(sol.success)
- assert_allclose(sol.p, [1, 1], rtol=1e-4)
- sol_test = sol.sol(x_test)
- for isol in range(0, n, 4):
- assert_allclose(sol_test[isol],
- big_sol_with_parameters(x_test, [1, 1])[0],
- rtol=1e-4, atol=1e-4)
- assert_allclose(sol_test[isol + 2],
- big_sol_with_parameters(x_test, [1, 1])[1],
- rtol=1e-4, atol=1e-4)
- f_test = big_fun_with_parameters(x_test, sol_test, [1, 1])
- r = sol.sol(x_test, 1) - f_test
- rel_res = r / (1 + np.abs(f_test))
- norm_res = np.sum(rel_res ** 2, axis=0) ** 0.5
- assert_(np.all(norm_res < 1e-3))
- assert_(np.all(sol.rms_residuals < 1e-3))
- assert_allclose(sol.sol(sol.x), sol.y, rtol=1e-10, atol=1e-10)
- assert_allclose(sol.sol(sol.x, 1), sol.yp, rtol=1e-10, atol=1e-10)
- def test_shock_layer():
- x = np.linspace(-1, 1, 5)
- x_test = np.linspace(-1, 1, 100)
- y = np.zeros((2, x.size))
- sol = solve_bvp(shock_fun, shock_bc, x, y)
- assert_equal(sol.status, 0)
- assert_(sol.success)
- assert_(sol.x.size < 110)
- sol_test = sol.sol(x_test)
- assert_allclose(sol_test[0], shock_sol(x_test), rtol=1e-5, atol=1e-5)
- f_test = shock_fun(x_test, sol_test)
- r = sol.sol(x_test, 1) - f_test
- rel_res = r / (1 + np.abs(f_test))
- norm_res = np.sum(rel_res ** 2, axis=0) ** 0.5
- assert_(np.all(norm_res < 1e-3))
- assert_allclose(sol.sol(sol.x), sol.y, rtol=1e-10, atol=1e-10)
- assert_allclose(sol.sol(sol.x, 1), sol.yp, rtol=1e-10, atol=1e-10)
- def test_nonlin_bc():
- x = np.linspace(0, 0.1, 5)
- x_test = x
- y = np.zeros([2, x.size])
- sol = solve_bvp(nonlin_bc_fun, nonlin_bc_bc, x, y)
- assert_equal(sol.status, 0)
- assert_(sol.success)
- assert_(sol.x.size < 8)
- sol_test = sol.sol(x_test)
- assert_allclose(sol_test[0], nonlin_bc_sol(x_test), rtol=1e-5, atol=1e-5)
- f_test = nonlin_bc_fun(x_test, sol_test)
- r = sol.sol(x_test, 1) - f_test
- rel_res = r / (1 + np.abs(f_test))
- norm_res = np.sum(rel_res ** 2, axis=0) ** 0.5
- assert_(np.all(norm_res < 1e-3))
- assert_allclose(sol.sol(sol.x), sol.y, rtol=1e-10, atol=1e-10)
- assert_allclose(sol.sol(sol.x, 1), sol.yp, rtol=1e-10, atol=1e-10)
- def test_verbose():
- # Smoke test that checks the printing does something and does not crash
- x = np.linspace(0, 1, 5)
- y = np.zeros((2, x.shape[0]))
- for verbose in [0, 1, 2]:
- old_stdout = sys.stdout
- sys.stdout = StringIO()
- try:
- sol = solve_bvp(exp_fun, exp_bc, x, y, verbose=verbose)
- text = sys.stdout.getvalue()
- finally:
- sys.stdout = old_stdout
- assert_(sol.success)
- if verbose == 0:
- assert_(not text, text)
- if verbose >= 1:
- assert_("Solved in" in text, text)
- if verbose >= 2:
- assert_("Max residual" in text, text)
|