12345678910111213141516171819202122232425262728293031323334353637 |
- import pytest
- from numpy.testing import assert_allclose, assert_
- import numpy as np
- from scipy.integrate import RK23, RK45, DOP853
- from scipy.integrate._ivp import dop853_coefficients
- @pytest.mark.parametrize("solver", [RK23, RK45, DOP853])
- def test_coefficient_properties(solver):
- assert_allclose(np.sum(solver.B), 1, rtol=1e-15)
- assert_allclose(np.sum(solver.A, axis=1), solver.C, rtol=1e-14)
- def test_coefficient_properties_dop853():
- assert_allclose(np.sum(dop853_coefficients.B), 1, rtol=1e-15)
- assert_allclose(np.sum(dop853_coefficients.A, axis=1),
- dop853_coefficients.C,
- rtol=1e-14)
- @pytest.mark.parametrize("solver_class", [RK23, RK45, DOP853])
- def test_error_estimation(solver_class):
- step = 0.2
- solver = solver_class(lambda t, y: y, 0, [1], 1, first_step=step)
- solver.step()
- error_estimate = solver._estimate_error(solver.K, step)
- error = solver.y - np.exp([step])
- assert_(np.abs(error) < np.abs(error_estimate))
- @pytest.mark.parametrize("solver_class", [RK23, RK45, DOP853])
- def test_error_estimation_complex(solver_class):
- h = 0.2
- solver = solver_class(lambda t, y: 1j * y, 0, [1j], 1, first_step=h)
- solver.step()
- err_norm = solver._estimate_error_norm(solver.K, h, scale=[1])
- assert np.isrealobj(err_norm)
|