123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428 |
- """
- Discrete Fourier Transforms - _basic.py
- """
- # Created by Pearu Peterson, August,September 2002
- __all__ = ['fft','ifft','fftn','ifftn','rfft','irfft',
- 'fft2','ifft2']
- from scipy.fft import _pocketfft
- from ._helper import _good_shape
- def fft(x, n=None, axis=-1, overwrite_x=False):
- """
- Return discrete Fourier transform of real or complex sequence.
- The returned complex array contains ``y(0), y(1),..., y(n-1)``, where
- ``y(j) = (x * exp(-2*pi*sqrt(-1)*j*np.arange(n)/n)).sum()``.
- Parameters
- ----------
- x : array_like
- Array to Fourier transform.
- n : int, optional
- Length of the Fourier transform. If ``n < x.shape[axis]``, `x` is
- truncated. If ``n > x.shape[axis]``, `x` is zero-padded. The
- default results in ``n = x.shape[axis]``.
- axis : int, optional
- Axis along which the fft's are computed; the default is over the
- last axis (i.e., ``axis=-1``).
- overwrite_x : bool, optional
- If True, the contents of `x` can be destroyed; the default is False.
- Returns
- -------
- z : complex ndarray
- with the elements::
- [y(0),y(1),..,y(n/2),y(1-n/2),...,y(-1)] if n is even
- [y(0),y(1),..,y((n-1)/2),y(-(n-1)/2),...,y(-1)] if n is odd
- where::
- y(j) = sum[k=0..n-1] x[k] * exp(-sqrt(-1)*j*k* 2*pi/n), j = 0..n-1
- See Also
- --------
- ifft : Inverse FFT
- rfft : FFT of a real sequence
- Notes
- -----
- The packing of the result is "standard": If ``A = fft(a, n)``, then
- ``A[0]`` contains the zero-frequency term, ``A[1:n/2]`` contains the
- positive-frequency terms, and ``A[n/2:]`` contains the negative-frequency
- terms, in order of decreasingly negative frequency. So ,for an 8-point
- transform, the frequencies of the result are [0, 1, 2, 3, -4, -3, -2, -1].
- To rearrange the fft output so that the zero-frequency component is
- centered, like [-4, -3, -2, -1, 0, 1, 2, 3], use `fftshift`.
- Both single and double precision routines are implemented. Half precision
- inputs will be converted to single precision. Non-floating-point inputs
- will be converted to double precision. Long-double precision inputs are
- not supported.
- This function is most efficient when `n` is a power of two, and least
- efficient when `n` is prime.
- Note that if ``x`` is real-valued, then ``A[j] == A[n-j].conjugate()``.
- If ``x`` is real-valued and ``n`` is even, then ``A[n/2]`` is real.
- If the data type of `x` is real, a "real FFT" algorithm is automatically
- used, which roughly halves the computation time. To increase efficiency
- a little further, use `rfft`, which does the same calculation, but only
- outputs half of the symmetrical spectrum. If the data is both real and
- symmetrical, the `dct` can again double the efficiency by generating
- half of the spectrum from half of the signal.
- Examples
- --------
- >>> import numpy as np
- >>> from scipy.fftpack import fft, ifft
- >>> x = np.arange(5)
- >>> np.allclose(fft(ifft(x)), x, atol=1e-15) # within numerical accuracy.
- True
- """
- return _pocketfft.fft(x, n, axis, None, overwrite_x)
- def ifft(x, n=None, axis=-1, overwrite_x=False):
- """
- Return discrete inverse Fourier transform of real or complex sequence.
- The returned complex array contains ``y(0), y(1),..., y(n-1)``, where
- ``y(j) = (x * exp(2*pi*sqrt(-1)*j*np.arange(n)/n)).mean()``.
- Parameters
- ----------
- x : array_like
- Transformed data to invert.
- n : int, optional
- Length of the inverse Fourier transform. If ``n < x.shape[axis]``,
- `x` is truncated. If ``n > x.shape[axis]``, `x` is zero-padded.
- The default results in ``n = x.shape[axis]``.
- axis : int, optional
- Axis along which the ifft's are computed; the default is over the
- last axis (i.e., ``axis=-1``).
- overwrite_x : bool, optional
- If True, the contents of `x` can be destroyed; the default is False.
- Returns
- -------
- ifft : ndarray of floats
- The inverse discrete Fourier transform.
- See Also
- --------
- fft : Forward FFT
- Notes
- -----
- Both single and double precision routines are implemented. Half precision
- inputs will be converted to single precision. Non-floating-point inputs
- will be converted to double precision. Long-double precision inputs are
- not supported.
- This function is most efficient when `n` is a power of two, and least
- efficient when `n` is prime.
- If the data type of `x` is real, a "real IFFT" algorithm is automatically
- used, which roughly halves the computation time.
- Examples
- --------
- >>> from scipy.fftpack import fft, ifft
- >>> import numpy as np
- >>> x = np.arange(5)
- >>> np.allclose(ifft(fft(x)), x, atol=1e-15) # within numerical accuracy.
- True
- """
- return _pocketfft.ifft(x, n, axis, None, overwrite_x)
- def rfft(x, n=None, axis=-1, overwrite_x=False):
- """
- Discrete Fourier transform of a real sequence.
- Parameters
- ----------
- x : array_like, real-valued
- The data to transform.
- n : int, optional
- Defines the length of the Fourier transform. If `n` is not specified
- (the default) then ``n = x.shape[axis]``. If ``n < x.shape[axis]``,
- `x` is truncated, if ``n > x.shape[axis]``, `x` is zero-padded.
- axis : int, optional
- The axis along which the transform is applied. The default is the
- last axis.
- overwrite_x : bool, optional
- If set to true, the contents of `x` can be overwritten. Default is
- False.
- Returns
- -------
- z : real ndarray
- The returned real array contains::
- [y(0),Re(y(1)),Im(y(1)),...,Re(y(n/2))] if n is even
- [y(0),Re(y(1)),Im(y(1)),...,Re(y(n/2)),Im(y(n/2))] if n is odd
- where::
- y(j) = sum[k=0..n-1] x[k] * exp(-sqrt(-1)*j*k*2*pi/n)
- j = 0..n-1
- See Also
- --------
- fft, irfft, scipy.fft.rfft
- Notes
- -----
- Within numerical accuracy, ``y == rfft(irfft(y))``.
- Both single and double precision routines are implemented. Half precision
- inputs will be converted to single precision. Non-floating-point inputs
- will be converted to double precision. Long-double precision inputs are
- not supported.
- To get an output with a complex datatype, consider using the newer
- function `scipy.fft.rfft`.
- Examples
- --------
- >>> from scipy.fftpack import fft, rfft
- >>> a = [9, -9, 1, 3]
- >>> fft(a)
- array([ 4. +0.j, 8.+12.j, 16. +0.j, 8.-12.j])
- >>> rfft(a)
- array([ 4., 8., 12., 16.])
- """
- return _pocketfft.rfft_fftpack(x, n, axis, None, overwrite_x)
- def irfft(x, n=None, axis=-1, overwrite_x=False):
- """
- Return inverse discrete Fourier transform of real sequence x.
- The contents of `x` are interpreted as the output of the `rfft`
- function.
- Parameters
- ----------
- x : array_like
- Transformed data to invert.
- n : int, optional
- Length of the inverse Fourier transform.
- If n < x.shape[axis], x is truncated.
- If n > x.shape[axis], x is zero-padded.
- The default results in n = x.shape[axis].
- axis : int, optional
- Axis along which the ifft's are computed; the default is over
- the last axis (i.e., axis=-1).
- overwrite_x : bool, optional
- If True, the contents of `x` can be destroyed; the default is False.
- Returns
- -------
- irfft : ndarray of floats
- The inverse discrete Fourier transform.
- See Also
- --------
- rfft, ifft, scipy.fft.irfft
- Notes
- -----
- The returned real array contains::
- [y(0),y(1),...,y(n-1)]
- where for n is even::
- y(j) = 1/n (sum[k=1..n/2-1] (x[2*k-1]+sqrt(-1)*x[2*k])
- * exp(sqrt(-1)*j*k* 2*pi/n)
- + c.c. + x[0] + (-1)**(j) x[n-1])
- and for n is odd::
- y(j) = 1/n (sum[k=1..(n-1)/2] (x[2*k-1]+sqrt(-1)*x[2*k])
- * exp(sqrt(-1)*j*k* 2*pi/n)
- + c.c. + x[0])
- c.c. denotes complex conjugate of preceding expression.
- For details on input parameters, see `rfft`.
- To process (conjugate-symmetric) frequency-domain data with a complex
- datatype, consider using the newer function `scipy.fft.irfft`.
- Examples
- --------
- >>> from scipy.fftpack import rfft, irfft
- >>> a = [1.0, 2.0, 3.0, 4.0, 5.0]
- >>> irfft(a)
- array([ 2.6 , -3.16405192, 1.24398433, -1.14955713, 1.46962473])
- >>> irfft(rfft(a))
- array([1., 2., 3., 4., 5.])
- """
- return _pocketfft.irfft_fftpack(x, n, axis, None, overwrite_x)
- def fftn(x, shape=None, axes=None, overwrite_x=False):
- """
- Return multidimensional discrete Fourier transform.
- The returned array contains::
- y[j_1,..,j_d] = sum[k_1=0..n_1-1, ..., k_d=0..n_d-1]
- x[k_1,..,k_d] * prod[i=1..d] exp(-sqrt(-1)*2*pi/n_i * j_i * k_i)
- where d = len(x.shape) and n = x.shape.
- Parameters
- ----------
- x : array_like
- The (N-D) array to transform.
- shape : int or array_like of ints or None, optional
- The shape of the result. If both `shape` and `axes` (see below) are
- None, `shape` is ``x.shape``; if `shape` is None but `axes` is
- not None, then `shape` is ``numpy.take(x.shape, axes, axis=0)``.
- If ``shape[i] > x.shape[i]``, the ith dimension is padded with zeros.
- If ``shape[i] < x.shape[i]``, the ith dimension is truncated to
- length ``shape[i]``.
- If any element of `shape` is -1, the size of the corresponding
- dimension of `x` is used.
- axes : int or array_like of ints or None, optional
- The axes of `x` (`y` if `shape` is not None) along which the
- transform is applied.
- The default is over all axes.
- overwrite_x : bool, optional
- If True, the contents of `x` can be destroyed. Default is False.
- Returns
- -------
- y : complex-valued N-D NumPy array
- The (N-D) DFT of the input array.
- See Also
- --------
- ifftn
- Notes
- -----
- If ``x`` is real-valued, then
- ``y[..., j_i, ...] == y[..., n_i-j_i, ...].conjugate()``.
- Both single and double precision routines are implemented. Half precision
- inputs will be converted to single precision. Non-floating-point inputs
- will be converted to double precision. Long-double precision inputs are
- not supported.
- Examples
- --------
- >>> import numpy as np
- >>> from scipy.fftpack import fftn, ifftn
- >>> y = (-np.arange(16), 8 - np.arange(16), np.arange(16))
- >>> np.allclose(y, fftn(ifftn(y)))
- True
- """
- shape = _good_shape(x, shape, axes)
- return _pocketfft.fftn(x, shape, axes, None, overwrite_x)
- def ifftn(x, shape=None, axes=None, overwrite_x=False):
- """
- Return inverse multidimensional discrete Fourier transform.
- The sequence can be of an arbitrary type.
- The returned array contains::
- y[j_1,..,j_d] = 1/p * sum[k_1=0..n_1-1, ..., k_d=0..n_d-1]
- x[k_1,..,k_d] * prod[i=1..d] exp(sqrt(-1)*2*pi/n_i * j_i * k_i)
- where ``d = len(x.shape)``, ``n = x.shape``, and ``p = prod[i=1..d] n_i``.
- For description of parameters see `fftn`.
- See Also
- --------
- fftn : for detailed information.
- Examples
- --------
- >>> from scipy.fftpack import fftn, ifftn
- >>> import numpy as np
- >>> y = (-np.arange(16), 8 - np.arange(16), np.arange(16))
- >>> np.allclose(y, ifftn(fftn(y)))
- True
- """
- shape = _good_shape(x, shape, axes)
- return _pocketfft.ifftn(x, shape, axes, None, overwrite_x)
- def fft2(x, shape=None, axes=(-2,-1), overwrite_x=False):
- """
- 2-D discrete Fourier transform.
- Return the 2-D discrete Fourier transform of the 2-D argument
- `x`.
- See Also
- --------
- fftn : for detailed information.
- Examples
- --------
- >>> import numpy as np
- >>> from scipy.fftpack import fft2, ifft2
- >>> y = np.mgrid[:5, :5][0]
- >>> y
- array([[0, 0, 0, 0, 0],
- [1, 1, 1, 1, 1],
- [2, 2, 2, 2, 2],
- [3, 3, 3, 3, 3],
- [4, 4, 4, 4, 4]])
- >>> np.allclose(y, ifft2(fft2(y)))
- True
- """
- return fftn(x,shape,axes,overwrite_x)
- def ifft2(x, shape=None, axes=(-2,-1), overwrite_x=False):
- """
- 2-D discrete inverse Fourier transform of real or complex sequence.
- Return inverse 2-D discrete Fourier transform of
- arbitrary type sequence x.
- See `ifft` for more information.
- See Also
- --------
- fft2, ifft
- Examples
- --------
- >>> import numpy as np
- >>> from scipy.fftpack import fft2, ifft2
- >>> y = np.mgrid[:5, :5][0]
- >>> y
- array([[0, 0, 0, 0, 0],
- [1, 1, 1, 1, 1],
- [2, 2, 2, 2, 2],
- [3, 3, 3, 3, 3],
- [4, 4, 4, 4, 4]])
- >>> np.allclose(y, fft2(ifft2(y)))
- True
- """
- return ifftn(x,shape,axes,overwrite_x)
|