123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719 |
- from datetime import datetime
- import re
- import numpy as np
- import pytest
- import pandas as pd
- from pandas import (
- DataFrame,
- Index,
- MultiIndex,
- Series,
- _testing as tm,
- )
- @pytest.mark.parametrize("method", ["split", "rsplit"])
- def test_split(any_string_dtype, method):
- values = Series(["a_b_c", "c_d_e", np.nan, "f_g_h"], dtype=any_string_dtype)
- result = getattr(values.str, method)("_")
- exp = Series([["a", "b", "c"], ["c", "d", "e"], np.nan, ["f", "g", "h"]])
- tm.assert_series_equal(result, exp)
- @pytest.mark.parametrize("method", ["split", "rsplit"])
- def test_split_more_than_one_char(any_string_dtype, method):
- # more than one char
- values = Series(["a__b__c", "c__d__e", np.nan, "f__g__h"], dtype=any_string_dtype)
- result = getattr(values.str, method)("__")
- exp = Series([["a", "b", "c"], ["c", "d", "e"], np.nan, ["f", "g", "h"]])
- tm.assert_series_equal(result, exp)
- result = getattr(values.str, method)("__", expand=False)
- tm.assert_series_equal(result, exp)
- def test_split_more_regex_split(any_string_dtype):
- # regex split
- values = Series(["a,b_c", "c_d,e", np.nan, "f,g,h"], dtype=any_string_dtype)
- result = values.str.split("[,_]")
- exp = Series([["a", "b", "c"], ["c", "d", "e"], np.nan, ["f", "g", "h"]])
- tm.assert_series_equal(result, exp)
- def test_split_regex(any_string_dtype):
- # GH 43563
- # explicit regex = True split
- values = Series("xxxjpgzzz.jpg", dtype=any_string_dtype)
- result = values.str.split(r"\.jpg", regex=True)
- exp = Series([["xxxjpgzzz", ""]])
- tm.assert_series_equal(result, exp)
- def test_split_regex_explicit(any_string_dtype):
- # explicit regex = True split with compiled regex
- regex_pat = re.compile(r".jpg")
- values = Series("xxxjpgzzz.jpg", dtype=any_string_dtype)
- result = values.str.split(regex_pat)
- exp = Series([["xx", "zzz", ""]])
- tm.assert_series_equal(result, exp)
- # explicit regex = False split
- result = values.str.split(r"\.jpg", regex=False)
- exp = Series([["xxxjpgzzz.jpg"]])
- tm.assert_series_equal(result, exp)
- # non explicit regex split, pattern length == 1
- result = values.str.split(r".")
- exp = Series([["xxxjpgzzz", "jpg"]])
- tm.assert_series_equal(result, exp)
- # non explicit regex split, pattern length != 1
- result = values.str.split(r".jpg")
- exp = Series([["xx", "zzz", ""]])
- tm.assert_series_equal(result, exp)
- # regex=False with pattern compiled regex raises error
- with pytest.raises(
- ValueError,
- match="Cannot use a compiled regex as replacement pattern with regex=False",
- ):
- values.str.split(regex_pat, regex=False)
- @pytest.mark.parametrize("expand", [None, False])
- @pytest.mark.parametrize("method", ["split", "rsplit"])
- def test_split_object_mixed(expand, method):
- mixed = Series(["a_b_c", np.nan, "d_e_f", True, datetime.today(), None, 1, 2.0])
- result = getattr(mixed.str, method)("_", expand=expand)
- exp = Series(
- [
- ["a", "b", "c"],
- np.nan,
- ["d", "e", "f"],
- np.nan,
- np.nan,
- np.nan,
- np.nan,
- np.nan,
- ]
- )
- assert isinstance(result, Series)
- tm.assert_almost_equal(result, exp)
- @pytest.mark.parametrize("method", ["split", "rsplit"])
- @pytest.mark.parametrize("n", [None, 0])
- def test_split_n(any_string_dtype, method, n):
- s = Series(["a b", pd.NA, "b c"], dtype=any_string_dtype)
- expected = Series([["a", "b"], pd.NA, ["b", "c"]])
- result = getattr(s.str, method)(" ", n=n)
- tm.assert_series_equal(result, expected)
- def test_rsplit(any_string_dtype):
- # regex split is not supported by rsplit
- values = Series(["a,b_c", "c_d,e", np.nan, "f,g,h"], dtype=any_string_dtype)
- result = values.str.rsplit("[,_]")
- exp = Series([["a,b_c"], ["c_d,e"], np.nan, ["f,g,h"]])
- tm.assert_series_equal(result, exp)
- def test_rsplit_max_number(any_string_dtype):
- # setting max number of splits, make sure it's from reverse
- values = Series(["a_b_c", "c_d_e", np.nan, "f_g_h"], dtype=any_string_dtype)
- result = values.str.rsplit("_", n=1)
- exp = Series([["a_b", "c"], ["c_d", "e"], np.nan, ["f_g", "h"]])
- tm.assert_series_equal(result, exp)
- def test_split_blank_string(any_string_dtype):
- # expand blank split GH 20067
- values = Series([""], name="test", dtype=any_string_dtype)
- result = values.str.split(expand=True)
- exp = DataFrame([[]], dtype=any_string_dtype) # NOTE: this is NOT an empty df
- tm.assert_frame_equal(result, exp)
- def test_split_blank_string_with_non_empty(any_string_dtype):
- values = Series(["a b c", "a b", "", " "], name="test", dtype=any_string_dtype)
- result = values.str.split(expand=True)
- exp = DataFrame(
- [
- ["a", "b", "c"],
- ["a", "b", np.nan],
- [np.nan, np.nan, np.nan],
- [np.nan, np.nan, np.nan],
- ],
- dtype=any_string_dtype,
- )
- tm.assert_frame_equal(result, exp)
- @pytest.mark.parametrize("method", ["split", "rsplit"])
- def test_split_noargs(any_string_dtype, method):
- # #1859
- s = Series(["Wes McKinney", "Travis Oliphant"], dtype=any_string_dtype)
- result = getattr(s.str, method)()
- expected = ["Travis", "Oliphant"]
- assert result[1] == expected
- @pytest.mark.parametrize(
- "data, pat",
- [
- (["bd asdf jfg", "kjasdflqw asdfnfk"], None),
- (["bd asdf jfg", "kjasdflqw asdfnfk"], "asdf"),
- (["bd_asdf_jfg", "kjasdflqw_asdfnfk"], "_"),
- ],
- )
- @pytest.mark.parametrize("n", [-1, 0])
- def test_split_maxsplit(data, pat, any_string_dtype, n):
- # re.split 0, str.split -1
- s = Series(data, dtype=any_string_dtype)
- result = s.str.split(pat=pat, n=n)
- xp = s.str.split(pat=pat)
- tm.assert_series_equal(result, xp)
- @pytest.mark.parametrize(
- "data, pat, expected",
- [
- (
- ["split once", "split once too!"],
- None,
- Series({0: ["split", "once"], 1: ["split", "once too!"]}),
- ),
- (
- ["split_once", "split_once_too!"],
- "_",
- Series({0: ["split", "once"], 1: ["split", "once_too!"]}),
- ),
- ],
- )
- def test_split_no_pat_with_nonzero_n(data, pat, expected, any_string_dtype):
- s = Series(data, dtype=any_string_dtype)
- result = s.str.split(pat=pat, n=1)
- tm.assert_series_equal(expected, result, check_index_type=False)
- def test_split_to_dataframe_no_splits(any_string_dtype):
- s = Series(["nosplit", "alsonosplit"], dtype=any_string_dtype)
- result = s.str.split("_", expand=True)
- exp = DataFrame({0: Series(["nosplit", "alsonosplit"], dtype=any_string_dtype)})
- tm.assert_frame_equal(result, exp)
- def test_split_to_dataframe(any_string_dtype):
- s = Series(["some_equal_splits", "with_no_nans"], dtype=any_string_dtype)
- result = s.str.split("_", expand=True)
- exp = DataFrame(
- {0: ["some", "with"], 1: ["equal", "no"], 2: ["splits", "nans"]},
- dtype=any_string_dtype,
- )
- tm.assert_frame_equal(result, exp)
- def test_split_to_dataframe_unequal_splits(any_string_dtype):
- s = Series(
- ["some_unequal_splits", "one_of_these_things_is_not"], dtype=any_string_dtype
- )
- result = s.str.split("_", expand=True)
- exp = DataFrame(
- {
- 0: ["some", "one"],
- 1: ["unequal", "of"],
- 2: ["splits", "these"],
- 3: [np.nan, "things"],
- 4: [np.nan, "is"],
- 5: [np.nan, "not"],
- },
- dtype=any_string_dtype,
- )
- tm.assert_frame_equal(result, exp)
- def test_split_to_dataframe_with_index(any_string_dtype):
- s = Series(
- ["some_splits", "with_index"], index=["preserve", "me"], dtype=any_string_dtype
- )
- result = s.str.split("_", expand=True)
- exp = DataFrame(
- {0: ["some", "with"], 1: ["splits", "index"]},
- index=["preserve", "me"],
- dtype=any_string_dtype,
- )
- tm.assert_frame_equal(result, exp)
- with pytest.raises(ValueError, match="expand must be"):
- s.str.split("_", expand="not_a_boolean")
- def test_split_to_multiindex_expand_no_splits():
- # https://github.com/pandas-dev/pandas/issues/23677
- idx = Index(["nosplit", "alsonosplit", np.nan])
- result = idx.str.split("_", expand=True)
- exp = idx
- tm.assert_index_equal(result, exp)
- assert result.nlevels == 1
- def test_split_to_multiindex_expand():
- idx = Index(["some_equal_splits", "with_no_nans", np.nan, None])
- result = idx.str.split("_", expand=True)
- exp = MultiIndex.from_tuples(
- [
- ("some", "equal", "splits"),
- ("with", "no", "nans"),
- [np.nan, np.nan, np.nan],
- [None, None, None],
- ]
- )
- tm.assert_index_equal(result, exp)
- assert result.nlevels == 3
- def test_split_to_multiindex_expand_unequal_splits():
- idx = Index(["some_unequal_splits", "one_of_these_things_is_not", np.nan, None])
- result = idx.str.split("_", expand=True)
- exp = MultiIndex.from_tuples(
- [
- ("some", "unequal", "splits", np.nan, np.nan, np.nan),
- ("one", "of", "these", "things", "is", "not"),
- (np.nan, np.nan, np.nan, np.nan, np.nan, np.nan),
- (None, None, None, None, None, None),
- ]
- )
- tm.assert_index_equal(result, exp)
- assert result.nlevels == 6
- with pytest.raises(ValueError, match="expand must be"):
- idx.str.split("_", expand="not_a_boolean")
- def test_rsplit_to_dataframe_expand_no_splits(any_string_dtype):
- s = Series(["nosplit", "alsonosplit"], dtype=any_string_dtype)
- result = s.str.rsplit("_", expand=True)
- exp = DataFrame({0: Series(["nosplit", "alsonosplit"])}, dtype=any_string_dtype)
- tm.assert_frame_equal(result, exp)
- def test_rsplit_to_dataframe_expand(any_string_dtype):
- s = Series(["some_equal_splits", "with_no_nans"], dtype=any_string_dtype)
- result = s.str.rsplit("_", expand=True)
- exp = DataFrame(
- {0: ["some", "with"], 1: ["equal", "no"], 2: ["splits", "nans"]},
- dtype=any_string_dtype,
- )
- tm.assert_frame_equal(result, exp)
- result = s.str.rsplit("_", expand=True, n=2)
- exp = DataFrame(
- {0: ["some", "with"], 1: ["equal", "no"], 2: ["splits", "nans"]},
- dtype=any_string_dtype,
- )
- tm.assert_frame_equal(result, exp)
- result = s.str.rsplit("_", expand=True, n=1)
- exp = DataFrame(
- {0: ["some_equal", "with_no"], 1: ["splits", "nans"]}, dtype=any_string_dtype
- )
- tm.assert_frame_equal(result, exp)
- def test_rsplit_to_dataframe_expand_with_index(any_string_dtype):
- s = Series(
- ["some_splits", "with_index"], index=["preserve", "me"], dtype=any_string_dtype
- )
- result = s.str.rsplit("_", expand=True)
- exp = DataFrame(
- {0: ["some", "with"], 1: ["splits", "index"]},
- index=["preserve", "me"],
- dtype=any_string_dtype,
- )
- tm.assert_frame_equal(result, exp)
- def test_rsplit_to_multiindex_expand_no_split():
- idx = Index(["nosplit", "alsonosplit"])
- result = idx.str.rsplit("_", expand=True)
- exp = idx
- tm.assert_index_equal(result, exp)
- assert result.nlevels == 1
- def test_rsplit_to_multiindex_expand():
- idx = Index(["some_equal_splits", "with_no_nans"])
- result = idx.str.rsplit("_", expand=True)
- exp = MultiIndex.from_tuples([("some", "equal", "splits"), ("with", "no", "nans")])
- tm.assert_index_equal(result, exp)
- assert result.nlevels == 3
- def test_rsplit_to_multiindex_expand_n():
- idx = Index(["some_equal_splits", "with_no_nans"])
- result = idx.str.rsplit("_", expand=True, n=1)
- exp = MultiIndex.from_tuples([("some_equal", "splits"), ("with_no", "nans")])
- tm.assert_index_equal(result, exp)
- assert result.nlevels == 2
- def test_split_nan_expand(any_string_dtype):
- # gh-18450
- s = Series(["foo,bar,baz", np.nan], dtype=any_string_dtype)
- result = s.str.split(",", expand=True)
- exp = DataFrame(
- [["foo", "bar", "baz"], [np.nan, np.nan, np.nan]], dtype=any_string_dtype
- )
- tm.assert_frame_equal(result, exp)
- # check that these are actually np.nan/pd.NA and not None
- # TODO see GH 18463
- # tm.assert_frame_equal does not differentiate
- if any_string_dtype == "object":
- assert all(np.isnan(x) for x in result.iloc[1])
- else:
- assert all(x is pd.NA for x in result.iloc[1])
- def test_split_with_name_series(any_string_dtype):
- # GH 12617
- # should preserve name
- s = Series(["a,b", "c,d"], name="xxx", dtype=any_string_dtype)
- res = s.str.split(",")
- exp = Series([["a", "b"], ["c", "d"]], name="xxx")
- tm.assert_series_equal(res, exp)
- res = s.str.split(",", expand=True)
- exp = DataFrame([["a", "b"], ["c", "d"]], dtype=any_string_dtype)
- tm.assert_frame_equal(res, exp)
- def test_split_with_name_index():
- # GH 12617
- idx = Index(["a,b", "c,d"], name="xxx")
- res = idx.str.split(",")
- exp = Index([["a", "b"], ["c", "d"]], name="xxx")
- assert res.nlevels == 1
- tm.assert_index_equal(res, exp)
- res = idx.str.split(",", expand=True)
- exp = MultiIndex.from_tuples([("a", "b"), ("c", "d")])
- assert res.nlevels == 2
- tm.assert_index_equal(res, exp)
- @pytest.mark.parametrize(
- "method, exp",
- [
- [
- "partition",
- [
- ("a", "__", "b__c"),
- ("c", "__", "d__e"),
- np.nan,
- ("f", "__", "g__h"),
- None,
- ],
- ],
- [
- "rpartition",
- [
- ("a__b", "__", "c"),
- ("c__d", "__", "e"),
- np.nan,
- ("f__g", "__", "h"),
- None,
- ],
- ],
- ],
- )
- def test_partition_series_more_than_one_char(method, exp, any_string_dtype):
- # https://github.com/pandas-dev/pandas/issues/23558
- # more than one char
- s = Series(["a__b__c", "c__d__e", np.nan, "f__g__h", None], dtype=any_string_dtype)
- result = getattr(s.str, method)("__", expand=False)
- expected = Series(exp)
- tm.assert_series_equal(result, expected)
- @pytest.mark.parametrize(
- "method, exp",
- [
- [
- "partition",
- [("a", " ", "b c"), ("c", " ", "d e"), np.nan, ("f", " ", "g h"), None],
- ],
- [
- "rpartition",
- [("a b", " ", "c"), ("c d", " ", "e"), np.nan, ("f g", " ", "h"), None],
- ],
- ],
- )
- def test_partition_series_none(any_string_dtype, method, exp):
- # https://github.com/pandas-dev/pandas/issues/23558
- # None
- s = Series(["a b c", "c d e", np.nan, "f g h", None], dtype=any_string_dtype)
- result = getattr(s.str, method)(expand=False)
- expected = Series(exp)
- tm.assert_series_equal(result, expected)
- @pytest.mark.parametrize(
- "method, exp",
- [
- [
- "partition",
- [("abc", "", ""), ("cde", "", ""), np.nan, ("fgh", "", ""), None],
- ],
- [
- "rpartition",
- [("", "", "abc"), ("", "", "cde"), np.nan, ("", "", "fgh"), None],
- ],
- ],
- )
- def test_partition_series_not_split(any_string_dtype, method, exp):
- # https://github.com/pandas-dev/pandas/issues/23558
- # Not split
- s = Series(["abc", "cde", np.nan, "fgh", None], dtype=any_string_dtype)
- result = getattr(s.str, method)("_", expand=False)
- expected = Series(exp)
- tm.assert_series_equal(result, expected)
- @pytest.mark.parametrize(
- "method, exp",
- [
- [
- "partition",
- [("a", "_", "b_c"), ("c", "_", "d_e"), np.nan, ("f", "_", "g_h")],
- ],
- [
- "rpartition",
- [("a_b", "_", "c"), ("c_d", "_", "e"), np.nan, ("f_g", "_", "h")],
- ],
- ],
- )
- def test_partition_series_unicode(any_string_dtype, method, exp):
- # https://github.com/pandas-dev/pandas/issues/23558
- # unicode
- s = Series(["a_b_c", "c_d_e", np.nan, "f_g_h"], dtype=any_string_dtype)
- result = getattr(s.str, method)("_", expand=False)
- expected = Series(exp)
- tm.assert_series_equal(result, expected)
- @pytest.mark.parametrize("method", ["partition", "rpartition"])
- def test_partition_series_stdlib(any_string_dtype, method):
- # https://github.com/pandas-dev/pandas/issues/23558
- # compare to standard lib
- s = Series(["A_B_C", "B_C_D", "E_F_G", "EFGHEF"], dtype=any_string_dtype)
- result = getattr(s.str, method)("_", expand=False).tolist()
- assert result == [getattr(v, method)("_") for v in s]
- @pytest.mark.parametrize(
- "method, expand, exp, exp_levels",
- [
- [
- "partition",
- False,
- np.array(
- [("a", "_", "b_c"), ("c", "_", "d_e"), ("f", "_", "g_h"), np.nan, None],
- dtype=object,
- ),
- 1,
- ],
- [
- "rpartition",
- False,
- np.array(
- [("a_b", "_", "c"), ("c_d", "_", "e"), ("f_g", "_", "h"), np.nan, None],
- dtype=object,
- ),
- 1,
- ],
- ],
- )
- def test_partition_index(method, expand, exp, exp_levels):
- # https://github.com/pandas-dev/pandas/issues/23558
- values = Index(["a_b_c", "c_d_e", "f_g_h", np.nan, None])
- result = getattr(values.str, method)("_", expand=expand)
- exp = Index(exp)
- tm.assert_index_equal(result, exp)
- assert result.nlevels == exp_levels
- @pytest.mark.parametrize(
- "method, exp",
- [
- [
- "partition",
- {
- 0: ["a", "c", np.nan, "f", None],
- 1: ["_", "_", np.nan, "_", None],
- 2: ["b_c", "d_e", np.nan, "g_h", None],
- },
- ],
- [
- "rpartition",
- {
- 0: ["a_b", "c_d", np.nan, "f_g", None],
- 1: ["_", "_", np.nan, "_", None],
- 2: ["c", "e", np.nan, "h", None],
- },
- ],
- ],
- )
- def test_partition_to_dataframe(any_string_dtype, method, exp):
- # https://github.com/pandas-dev/pandas/issues/23558
- s = Series(["a_b_c", "c_d_e", np.nan, "f_g_h", None], dtype=any_string_dtype)
- result = getattr(s.str, method)("_")
- expected = DataFrame(
- exp,
- dtype=any_string_dtype,
- )
- tm.assert_frame_equal(result, expected)
- @pytest.mark.parametrize(
- "method, exp",
- [
- [
- "partition",
- {
- 0: ["a", "c", np.nan, "f", None],
- 1: ["_", "_", np.nan, "_", None],
- 2: ["b_c", "d_e", np.nan, "g_h", None],
- },
- ],
- [
- "rpartition",
- {
- 0: ["a_b", "c_d", np.nan, "f_g", None],
- 1: ["_", "_", np.nan, "_", None],
- 2: ["c", "e", np.nan, "h", None],
- },
- ],
- ],
- )
- def test_partition_to_dataframe_from_series(any_string_dtype, method, exp):
- # https://github.com/pandas-dev/pandas/issues/23558
- s = Series(["a_b_c", "c_d_e", np.nan, "f_g_h", None], dtype=any_string_dtype)
- result = getattr(s.str, method)("_", expand=True)
- expected = DataFrame(
- exp,
- dtype=any_string_dtype,
- )
- tm.assert_frame_equal(result, expected)
- def test_partition_with_name(any_string_dtype):
- # GH 12617
- s = Series(["a,b", "c,d"], name="xxx", dtype=any_string_dtype)
- result = s.str.partition(",")
- expected = DataFrame(
- {0: ["a", "c"], 1: [",", ","], 2: ["b", "d"]}, dtype=any_string_dtype
- )
- tm.assert_frame_equal(result, expected)
- def test_partition_with_name_expand(any_string_dtype):
- # GH 12617
- # should preserve name
- s = Series(["a,b", "c,d"], name="xxx", dtype=any_string_dtype)
- result = s.str.partition(",", expand=False)
- expected = Series([("a", ",", "b"), ("c", ",", "d")], name="xxx")
- tm.assert_series_equal(result, expected)
- def test_partition_index_with_name():
- idx = Index(["a,b", "c,d"], name="xxx")
- result = idx.str.partition(",")
- expected = MultiIndex.from_tuples([("a", ",", "b"), ("c", ",", "d")])
- assert result.nlevels == 3
- tm.assert_index_equal(result, expected)
- def test_partition_index_with_name_expand_false():
- idx = Index(["a,b", "c,d"], name="xxx")
- # should preserve name
- result = idx.str.partition(",", expand=False)
- expected = Index(np.array([("a", ",", "b"), ("c", ",", "d")]), name="xxx")
- assert result.nlevels == 1
- tm.assert_index_equal(result, expected)
- @pytest.mark.parametrize("method", ["partition", "rpartition"])
- def test_partition_sep_kwarg(any_string_dtype, method):
- # GH 22676; depr kwarg "pat" in favor of "sep"
- s = Series(["a_b_c", "c_d_e", np.nan, "f_g_h"], dtype=any_string_dtype)
- expected = getattr(s.str, method)(sep="_")
- result = getattr(s.str, method)("_")
- tm.assert_frame_equal(result, expected)
- def test_get():
- ser = Series(["a_b_c", "c_d_e", np.nan, "f_g_h"])
- result = ser.str.split("_").str.get(1)
- expected = Series(["b", "d", np.nan, "g"])
- tm.assert_series_equal(result, expected)
- def test_get_mixed_object():
- ser = Series(["a_b_c", np.nan, "c_d_e", True, datetime.today(), None, 1, 2.0])
- result = ser.str.split("_").str.get(1)
- expected = Series(["b", np.nan, "d", np.nan, np.nan, np.nan, np.nan, np.nan])
- tm.assert_series_equal(result, expected)
- @pytest.mark.parametrize("idx", [2, -3])
- def test_get_bounds(idx):
- ser = Series(["1_2_3_4_5", "6_7_8_9_10", "11_12"])
- result = ser.str.split("_").str.get(idx)
- expected = Series(["3", "8", np.nan])
- tm.assert_series_equal(result, expected)
- @pytest.mark.parametrize(
- "idx, exp", [[2, [3, 3, np.nan, "b"]], [-1, [3, 3, np.nan, np.nan]]]
- )
- def test_get_complex(idx, exp):
- # GH 20671, getting value not in dict raising `KeyError`
- ser = Series([(1, 2, 3), [1, 2, 3], {1, 2, 3}, {1: "a", 2: "b", 3: "c"}])
- result = ser.str.get(idx)
- expected = Series(exp)
- tm.assert_series_equal(result, expected)
- @pytest.mark.parametrize("to_type", [tuple, list, np.array])
- def test_get_complex_nested(to_type):
- ser = Series([to_type([to_type([1, 2])])])
- result = ser.str.get(0)
- expected = Series([to_type([1, 2])])
- tm.assert_series_equal(result, expected)
- result = ser.str.get(1)
- expected = Series([np.nan])
- tm.assert_series_equal(result, expected)
- def test_get_strings(any_string_dtype):
- ser = Series(["a", "ab", np.nan, "abc"], dtype=any_string_dtype)
- result = ser.str.get(2)
- expected = Series([np.nan, np.nan, np.nan, "c"], dtype=any_string_dtype)
- tm.assert_series_equal(result, expected)
|