123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974 |
- from datetime import datetime
- import re
- import numpy as np
- import pytest
- from pandas.errors import PerformanceWarning
- import pandas as pd
- from pandas import (
- Series,
- _testing as tm,
- )
- # --------------------------------------------------------------------------------------
- # str.contains
- # --------------------------------------------------------------------------------------
- def test_contains(any_string_dtype):
- values = np.array(
- ["foo", np.nan, "fooommm__foo", "mmm_", "foommm[_]+bar"], dtype=np.object_
- )
- values = Series(values, dtype=any_string_dtype)
- pat = "mmm[_]+"
- result = values.str.contains(pat)
- expected_dtype = "object" if any_string_dtype == "object" else "boolean"
- expected = Series(
- np.array([False, np.nan, True, True, False], dtype=np.object_),
- dtype=expected_dtype,
- )
- tm.assert_series_equal(result, expected)
- result = values.str.contains(pat, regex=False)
- expected = Series(
- np.array([False, np.nan, False, False, True], dtype=np.object_),
- dtype=expected_dtype,
- )
- tm.assert_series_equal(result, expected)
- values = Series(
- np.array(["foo", "xyz", "fooommm__foo", "mmm_"], dtype=object),
- dtype=any_string_dtype,
- )
- result = values.str.contains(pat)
- expected_dtype = np.bool_ if any_string_dtype == "object" else "boolean"
- expected = Series(np.array([False, False, True, True]), dtype=expected_dtype)
- tm.assert_series_equal(result, expected)
- # case insensitive using regex
- values = Series(
- np.array(["Foo", "xYz", "fOOomMm__fOo", "MMM_"], dtype=object),
- dtype=any_string_dtype,
- )
- with tm.maybe_produces_warning(
- PerformanceWarning, any_string_dtype == "string[pyarrow]"
- ):
- result = values.str.contains("FOO|mmm", case=False)
- expected = Series(np.array([True, False, True, True]), dtype=expected_dtype)
- tm.assert_series_equal(result, expected)
- # case insensitive without regex
- result = values.str.contains("foo", regex=False, case=False)
- expected = Series(np.array([True, False, True, False]), dtype=expected_dtype)
- tm.assert_series_equal(result, expected)
- # unicode
- values = Series(
- np.array(["foo", np.nan, "fooommm__foo", "mmm_"], dtype=np.object_),
- dtype=any_string_dtype,
- )
- pat = "mmm[_]+"
- result = values.str.contains(pat)
- expected_dtype = "object" if any_string_dtype == "object" else "boolean"
- expected = Series(
- np.array([False, np.nan, True, True], dtype=np.object_), dtype=expected_dtype
- )
- tm.assert_series_equal(result, expected)
- result = values.str.contains(pat, na=False)
- expected_dtype = np.bool_ if any_string_dtype == "object" else "boolean"
- expected = Series(np.array([False, False, True, True]), dtype=expected_dtype)
- tm.assert_series_equal(result, expected)
- values = Series(
- np.array(["foo", "xyz", "fooommm__foo", "mmm_"], dtype=np.object_),
- dtype=any_string_dtype,
- )
- result = values.str.contains(pat)
- expected = Series(np.array([False, False, True, True]), dtype=expected_dtype)
- tm.assert_series_equal(result, expected)
- def test_contains_object_mixed():
- mixed = Series(
- np.array(
- ["a", np.nan, "b", True, datetime.today(), "foo", None, 1, 2.0],
- dtype=object,
- )
- )
- result = mixed.str.contains("o")
- expected = Series(
- np.array(
- [False, np.nan, False, np.nan, np.nan, True, np.nan, np.nan, np.nan],
- dtype=np.object_,
- )
- )
- tm.assert_series_equal(result, expected)
- def test_contains_na_kwarg_for_object_category():
- # gh 22158
- # na for category
- values = Series(["a", "b", "c", "a", np.nan], dtype="category")
- result = values.str.contains("a", na=True)
- expected = Series([True, False, False, True, True])
- tm.assert_series_equal(result, expected)
- result = values.str.contains("a", na=False)
- expected = Series([True, False, False, True, False])
- tm.assert_series_equal(result, expected)
- # na for objects
- values = Series(["a", "b", "c", "a", np.nan])
- result = values.str.contains("a", na=True)
- expected = Series([True, False, False, True, True])
- tm.assert_series_equal(result, expected)
- result = values.str.contains("a", na=False)
- expected = Series([True, False, False, True, False])
- tm.assert_series_equal(result, expected)
- @pytest.mark.parametrize(
- "na, expected",
- [
- (None, pd.NA),
- (True, True),
- (False, False),
- (0, False),
- (3, True),
- (np.nan, pd.NA),
- ],
- )
- @pytest.mark.parametrize("regex", [True, False])
- def test_contains_na_kwarg_for_nullable_string_dtype(
- nullable_string_dtype, na, expected, regex
- ):
- # https://github.com/pandas-dev/pandas/pull/41025#issuecomment-824062416
- values = Series(["a", "b", "c", "a", np.nan], dtype=nullable_string_dtype)
- result = values.str.contains("a", na=na, regex=regex)
- expected = Series([True, False, False, True, expected], dtype="boolean")
- tm.assert_series_equal(result, expected)
- def test_contains_moar(any_string_dtype):
- # PR #1179
- s = Series(
- ["A", "B", "C", "Aaba", "Baca", "", np.nan, "CABA", "dog", "cat"],
- dtype=any_string_dtype,
- )
- result = s.str.contains("a")
- expected_dtype = "object" if any_string_dtype == "object" else "boolean"
- expected = Series(
- [False, False, False, True, True, False, np.nan, False, False, True],
- dtype=expected_dtype,
- )
- tm.assert_series_equal(result, expected)
- with tm.maybe_produces_warning(
- PerformanceWarning, any_string_dtype == "string[pyarrow]"
- ):
- result = s.str.contains("a", case=False)
- expected = Series(
- [True, False, False, True, True, False, np.nan, True, False, True],
- dtype=expected_dtype,
- )
- tm.assert_series_equal(result, expected)
- result = s.str.contains("Aa")
- expected = Series(
- [False, False, False, True, False, False, np.nan, False, False, False],
- dtype=expected_dtype,
- )
- tm.assert_series_equal(result, expected)
- result = s.str.contains("ba")
- expected = Series(
- [False, False, False, True, False, False, np.nan, False, False, False],
- dtype=expected_dtype,
- )
- tm.assert_series_equal(result, expected)
- with tm.maybe_produces_warning(
- PerformanceWarning, any_string_dtype == "string[pyarrow]"
- ):
- result = s.str.contains("ba", case=False)
- expected = Series(
- [False, False, False, True, True, False, np.nan, True, False, False],
- dtype=expected_dtype,
- )
- tm.assert_series_equal(result, expected)
- def test_contains_nan(any_string_dtype):
- # PR #14171
- s = Series([np.nan, np.nan, np.nan], dtype=any_string_dtype)
- result = s.str.contains("foo", na=False)
- expected_dtype = np.bool_ if any_string_dtype == "object" else "boolean"
- expected = Series([False, False, False], dtype=expected_dtype)
- tm.assert_series_equal(result, expected)
- result = s.str.contains("foo", na=True)
- expected = Series([True, True, True], dtype=expected_dtype)
- tm.assert_series_equal(result, expected)
- result = s.str.contains("foo", na="foo")
- if any_string_dtype == "object":
- expected = Series(["foo", "foo", "foo"], dtype=np.object_)
- else:
- expected = Series([True, True, True], dtype="boolean")
- tm.assert_series_equal(result, expected)
- result = s.str.contains("foo")
- expected_dtype = "object" if any_string_dtype == "object" else "boolean"
- expected = Series([np.nan, np.nan, np.nan], dtype=expected_dtype)
- tm.assert_series_equal(result, expected)
- # --------------------------------------------------------------------------------------
- # str.startswith
- # --------------------------------------------------------------------------------------
- @pytest.mark.parametrize("pat", ["foo", ("foo", "baz")])
- @pytest.mark.parametrize("dtype", [None, "category"])
- @pytest.mark.parametrize("null_value", [None, np.nan, pd.NA])
- @pytest.mark.parametrize("na", [True, False])
- def test_startswith(pat, dtype, null_value, na):
- # add category dtype parametrizations for GH-36241
- values = Series(
- ["om", null_value, "foo_nom", "nom", "bar_foo", null_value, "foo"],
- dtype=dtype,
- )
- result = values.str.startswith(pat)
- exp = Series([False, np.nan, True, False, False, np.nan, True])
- tm.assert_series_equal(result, exp)
- result = values.str.startswith(pat, na=na)
- exp = Series([False, na, True, False, False, na, True])
- tm.assert_series_equal(result, exp)
- # mixed
- mixed = np.array(
- ["a", np.nan, "b", True, datetime.today(), "foo", None, 1, 2.0],
- dtype=np.object_,
- )
- rs = Series(mixed).str.startswith("f")
- xp = Series([False, np.nan, False, np.nan, np.nan, True, np.nan, np.nan, np.nan])
- tm.assert_series_equal(rs, xp)
- @pytest.mark.parametrize("na", [None, True, False])
- def test_startswith_nullable_string_dtype(nullable_string_dtype, na):
- values = Series(
- ["om", None, "foo_nom", "nom", "bar_foo", None, "foo", "regex", "rege."],
- dtype=nullable_string_dtype,
- )
- result = values.str.startswith("foo", na=na)
- exp = Series(
- [False, na, True, False, False, na, True, False, False], dtype="boolean"
- )
- tm.assert_series_equal(result, exp)
- result = values.str.startswith("rege.", na=na)
- exp = Series(
- [False, na, False, False, False, na, False, False, True], dtype="boolean"
- )
- tm.assert_series_equal(result, exp)
- # --------------------------------------------------------------------------------------
- # str.endswith
- # --------------------------------------------------------------------------------------
- @pytest.mark.parametrize("pat", ["foo", ("foo", "baz")])
- @pytest.mark.parametrize("dtype", [None, "category"])
- @pytest.mark.parametrize("null_value", [None, np.nan, pd.NA])
- @pytest.mark.parametrize("na", [True, False])
- def test_endswith(pat, dtype, null_value, na):
- # add category dtype parametrizations for GH-36241
- values = Series(
- ["om", null_value, "foo_nom", "nom", "bar_foo", null_value, "foo"],
- dtype=dtype,
- )
- result = values.str.endswith(pat)
- exp = Series([False, np.nan, False, False, True, np.nan, True])
- tm.assert_series_equal(result, exp)
- result = values.str.endswith(pat, na=na)
- exp = Series([False, na, False, False, True, na, True])
- tm.assert_series_equal(result, exp)
- # mixed
- mixed = np.array(
- ["a", np.nan, "b", True, datetime.today(), "foo", None, 1, 2.0],
- dtype=object,
- )
- rs = Series(mixed).str.endswith("f")
- xp = Series([False, np.nan, False, np.nan, np.nan, False, np.nan, np.nan, np.nan])
- tm.assert_series_equal(rs, xp)
- @pytest.mark.parametrize("na", [None, True, False])
- def test_endswith_nullable_string_dtype(nullable_string_dtype, na):
- values = Series(
- ["om", None, "foo_nom", "nom", "bar_foo", None, "foo", "regex", "rege."],
- dtype=nullable_string_dtype,
- )
- result = values.str.endswith("foo", na=na)
- exp = Series(
- [False, na, False, False, True, na, True, False, False], dtype="boolean"
- )
- tm.assert_series_equal(result, exp)
- result = values.str.endswith("rege.", na=na)
- exp = Series(
- [False, na, False, False, False, na, False, False, True], dtype="boolean"
- )
- tm.assert_series_equal(result, exp)
- # --------------------------------------------------------------------------------------
- # str.replace
- # --------------------------------------------------------------------------------------
- def test_replace(any_string_dtype):
- ser = Series(["fooBAD__barBAD", np.nan], dtype=any_string_dtype)
- result = ser.str.replace("BAD[_]*", "", regex=True)
- expected = Series(["foobar", np.nan], dtype=any_string_dtype)
- tm.assert_series_equal(result, expected)
- def test_replace_max_replacements(any_string_dtype):
- ser = Series(["fooBAD__barBAD", np.nan], dtype=any_string_dtype)
- expected = Series(["foobarBAD", np.nan], dtype=any_string_dtype)
- result = ser.str.replace("BAD[_]*", "", n=1, regex=True)
- tm.assert_series_equal(result, expected)
- expected = Series(["foo__barBAD", np.nan], dtype=any_string_dtype)
- result = ser.str.replace("BAD", "", n=1, regex=False)
- tm.assert_series_equal(result, expected)
- def test_replace_mixed_object():
- ser = Series(
- ["aBAD", np.nan, "bBAD", True, datetime.today(), "fooBAD", None, 1, 2.0]
- )
- result = Series(ser).str.replace("BAD[_]*", "", regex=True)
- expected = Series(["a", np.nan, "b", np.nan, np.nan, "foo", np.nan, np.nan, np.nan])
- tm.assert_series_equal(result, expected)
- def test_replace_unicode(any_string_dtype):
- ser = Series([b"abcd,\xc3\xa0".decode("utf-8")], dtype=any_string_dtype)
- expected = Series([b"abcd, \xc3\xa0".decode("utf-8")], dtype=any_string_dtype)
- with tm.maybe_produces_warning(
- PerformanceWarning, any_string_dtype == "string[pyarrow]"
- ):
- result = ser.str.replace(r"(?<=\w),(?=\w)", ", ", flags=re.UNICODE, regex=True)
- tm.assert_series_equal(result, expected)
- @pytest.mark.parametrize("repl", [None, 3, {"a": "b"}])
- @pytest.mark.parametrize("data", [["a", "b", None], ["a", "b", "c", "ad"]])
- def test_replace_wrong_repl_type_raises(any_string_dtype, index_or_series, repl, data):
- # https://github.com/pandas-dev/pandas/issues/13438
- msg = "repl must be a string or callable"
- obj = index_or_series(data, dtype=any_string_dtype)
- with pytest.raises(TypeError, match=msg):
- obj.str.replace("a", repl)
- def test_replace_callable(any_string_dtype):
- # GH 15055
- ser = Series(["fooBAD__barBAD", np.nan], dtype=any_string_dtype)
- # test with callable
- repl = lambda m: m.group(0).swapcase()
- with tm.maybe_produces_warning(
- PerformanceWarning, any_string_dtype == "string[pyarrow]"
- ):
- result = ser.str.replace("[a-z][A-Z]{2}", repl, n=2, regex=True)
- expected = Series(["foObaD__baRbaD", np.nan], dtype=any_string_dtype)
- tm.assert_series_equal(result, expected)
- @pytest.mark.parametrize(
- "repl", [lambda: None, lambda m, x: None, lambda m, x, y=None: None]
- )
- def test_replace_callable_raises(any_string_dtype, repl):
- # GH 15055
- values = Series(["fooBAD__barBAD", np.nan], dtype=any_string_dtype)
- # test with wrong number of arguments, raising an error
- msg = (
- r"((takes)|(missing)) (?(2)from \d+ to )?\d+ "
- r"(?(3)required )positional arguments?"
- )
- with pytest.raises(TypeError, match=msg):
- with tm.maybe_produces_warning(
- PerformanceWarning, any_string_dtype == "string[pyarrow]"
- ):
- values.str.replace("a", repl, regex=True)
- def test_replace_callable_named_groups(any_string_dtype):
- # test regex named groups
- ser = Series(["Foo Bar Baz", np.nan], dtype=any_string_dtype)
- pat = r"(?P<first>\w+) (?P<middle>\w+) (?P<last>\w+)"
- repl = lambda m: m.group("middle").swapcase()
- with tm.maybe_produces_warning(
- PerformanceWarning, any_string_dtype == "string[pyarrow]"
- ):
- result = ser.str.replace(pat, repl, regex=True)
- expected = Series(["bAR", np.nan], dtype=any_string_dtype)
- tm.assert_series_equal(result, expected)
- def test_replace_compiled_regex(any_string_dtype):
- # GH 15446
- ser = Series(["fooBAD__barBAD", np.nan], dtype=any_string_dtype)
- # test with compiled regex
- pat = re.compile(r"BAD_*")
- with tm.maybe_produces_warning(
- PerformanceWarning, any_string_dtype == "string[pyarrow]"
- ):
- result = ser.str.replace(pat, "", regex=True)
- expected = Series(["foobar", np.nan], dtype=any_string_dtype)
- tm.assert_series_equal(result, expected)
- with tm.maybe_produces_warning(
- PerformanceWarning, any_string_dtype == "string[pyarrow]"
- ):
- result = ser.str.replace(pat, "", n=1, regex=True)
- expected = Series(["foobarBAD", np.nan], dtype=any_string_dtype)
- tm.assert_series_equal(result, expected)
- def test_replace_compiled_regex_mixed_object():
- pat = re.compile(r"BAD_*")
- ser = Series(
- ["aBAD", np.nan, "bBAD", True, datetime.today(), "fooBAD", None, 1, 2.0]
- )
- result = Series(ser).str.replace(pat, "", regex=True)
- expected = Series(["a", np.nan, "b", np.nan, np.nan, "foo", np.nan, np.nan, np.nan])
- tm.assert_series_equal(result, expected)
- def test_replace_compiled_regex_unicode(any_string_dtype):
- ser = Series([b"abcd,\xc3\xa0".decode("utf-8")], dtype=any_string_dtype)
- expected = Series([b"abcd, \xc3\xa0".decode("utf-8")], dtype=any_string_dtype)
- pat = re.compile(r"(?<=\w),(?=\w)", flags=re.UNICODE)
- with tm.maybe_produces_warning(
- PerformanceWarning, any_string_dtype == "string[pyarrow]"
- ):
- result = ser.str.replace(pat, ", ", regex=True)
- tm.assert_series_equal(result, expected)
- def test_replace_compiled_regex_raises(any_string_dtype):
- # case and flags provided to str.replace will have no effect
- # and will produce warnings
- ser = Series(["fooBAD__barBAD__bad", np.nan], dtype=any_string_dtype)
- pat = re.compile(r"BAD_*")
- msg = "case and flags cannot be set when pat is a compiled regex"
- with pytest.raises(ValueError, match=msg):
- ser.str.replace(pat, "", flags=re.IGNORECASE, regex=True)
- with pytest.raises(ValueError, match=msg):
- ser.str.replace(pat, "", case=False, regex=True)
- with pytest.raises(ValueError, match=msg):
- ser.str.replace(pat, "", case=True, regex=True)
- def test_replace_compiled_regex_callable(any_string_dtype):
- # test with callable
- ser = Series(["fooBAD__barBAD", np.nan], dtype=any_string_dtype)
- repl = lambda m: m.group(0).swapcase()
- pat = re.compile("[a-z][A-Z]{2}")
- with tm.maybe_produces_warning(
- PerformanceWarning, any_string_dtype == "string[pyarrow]"
- ):
- result = ser.str.replace(pat, repl, n=2, regex=True)
- expected = Series(["foObaD__baRbaD", np.nan], dtype=any_string_dtype)
- tm.assert_series_equal(result, expected)
- @pytest.mark.parametrize(
- "regex,expected", [(True, ["bao", "bao", np.nan]), (False, ["bao", "foo", np.nan])]
- )
- def test_replace_literal(regex, expected, any_string_dtype):
- # GH16808 literal replace (regex=False vs regex=True)
- ser = Series(["f.o", "foo", np.nan], dtype=any_string_dtype)
- expected = Series(expected, dtype=any_string_dtype)
- result = ser.str.replace("f.", "ba", regex=regex)
- tm.assert_series_equal(result, expected)
- def test_replace_literal_callable_raises(any_string_dtype):
- ser = Series([], dtype=any_string_dtype)
- repl = lambda m: m.group(0).swapcase()
- msg = "Cannot use a callable replacement when regex=False"
- with pytest.raises(ValueError, match=msg):
- ser.str.replace("abc", repl, regex=False)
- def test_replace_literal_compiled_raises(any_string_dtype):
- ser = Series([], dtype=any_string_dtype)
- pat = re.compile("[a-z][A-Z]{2}")
- msg = "Cannot use a compiled regex as replacement pattern with regex=False"
- with pytest.raises(ValueError, match=msg):
- ser.str.replace(pat, "", regex=False)
- def test_replace_moar(any_string_dtype):
- # PR #1179
- ser = Series(
- ["A", "B", "C", "Aaba", "Baca", "", np.nan, "CABA", "dog", "cat"],
- dtype=any_string_dtype,
- )
- result = ser.str.replace("A", "YYY")
- expected = Series(
- ["YYY", "B", "C", "YYYaba", "Baca", "", np.nan, "CYYYBYYY", "dog", "cat"],
- dtype=any_string_dtype,
- )
- tm.assert_series_equal(result, expected)
- with tm.maybe_produces_warning(
- PerformanceWarning, any_string_dtype == "string[pyarrow]"
- ):
- result = ser.str.replace("A", "YYY", case=False)
- expected = Series(
- [
- "YYY",
- "B",
- "C",
- "YYYYYYbYYY",
- "BYYYcYYY",
- "",
- np.nan,
- "CYYYBYYY",
- "dog",
- "cYYYt",
- ],
- dtype=any_string_dtype,
- )
- tm.assert_series_equal(result, expected)
- with tm.maybe_produces_warning(
- PerformanceWarning, any_string_dtype == "string[pyarrow]"
- ):
- result = ser.str.replace("^.a|dog", "XX-XX ", case=False, regex=True)
- expected = Series(
- [
- "A",
- "B",
- "C",
- "XX-XX ba",
- "XX-XX ca",
- "",
- np.nan,
- "XX-XX BA",
- "XX-XX ",
- "XX-XX t",
- ],
- dtype=any_string_dtype,
- )
- tm.assert_series_equal(result, expected)
- def test_replace_not_case_sensitive_not_regex(any_string_dtype):
- # https://github.com/pandas-dev/pandas/issues/41602
- ser = Series(["A.", "a.", "Ab", "ab", np.nan], dtype=any_string_dtype)
- with tm.maybe_produces_warning(
- PerformanceWarning, any_string_dtype == "string[pyarrow]"
- ):
- result = ser.str.replace("a", "c", case=False, regex=False)
- expected = Series(["c.", "c.", "cb", "cb", np.nan], dtype=any_string_dtype)
- tm.assert_series_equal(result, expected)
- with tm.maybe_produces_warning(
- PerformanceWarning, any_string_dtype == "string[pyarrow]"
- ):
- result = ser.str.replace("a.", "c.", case=False, regex=False)
- expected = Series(["c.", "c.", "Ab", "ab", np.nan], dtype=any_string_dtype)
- tm.assert_series_equal(result, expected)
- def test_replace_regex(any_string_dtype):
- # https://github.com/pandas-dev/pandas/pull/24809
- s = Series(["a", "b", "ac", np.nan, ""], dtype=any_string_dtype)
- result = s.str.replace("^.$", "a", regex=True)
- expected = Series(["a", "a", "ac", np.nan, ""], dtype=any_string_dtype)
- tm.assert_series_equal(result, expected)
- @pytest.mark.parametrize("regex", [True, False])
- def test_replace_regex_single_character(regex, any_string_dtype):
- # https://github.com/pandas-dev/pandas/pull/24809, enforced in 2.0
- # GH 24804
- s = Series(["a.b", ".", "b", np.nan, ""], dtype=any_string_dtype)
- result = s.str.replace(".", "a", regex=regex)
- if regex:
- expected = Series(["aaa", "a", "a", np.nan, ""], dtype=any_string_dtype)
- else:
- expected = Series(["aab", "a", "b", np.nan, ""], dtype=any_string_dtype)
- tm.assert_series_equal(result, expected)
- # --------------------------------------------------------------------------------------
- # str.match
- # --------------------------------------------------------------------------------------
- def test_match(any_string_dtype):
- # New match behavior introduced in 0.13
- expected_dtype = "object" if any_string_dtype == "object" else "boolean"
- values = Series(["fooBAD__barBAD", np.nan, "foo"], dtype=any_string_dtype)
- result = values.str.match(".*(BAD[_]+).*(BAD)")
- expected = Series([True, np.nan, False], dtype=expected_dtype)
- tm.assert_series_equal(result, expected)
- values = Series(
- ["fooBAD__barBAD", "BAD_BADleroybrown", np.nan, "foo"], dtype=any_string_dtype
- )
- result = values.str.match(".*BAD[_]+.*BAD")
- expected = Series([True, True, np.nan, False], dtype=expected_dtype)
- tm.assert_series_equal(result, expected)
- result = values.str.match("BAD[_]+.*BAD")
- expected = Series([False, True, np.nan, False], dtype=expected_dtype)
- tm.assert_series_equal(result, expected)
- values = Series(
- ["fooBAD__barBAD", "^BAD_BADleroybrown", np.nan, "foo"], dtype=any_string_dtype
- )
- result = values.str.match("^BAD[_]+.*BAD")
- expected = Series([False, False, np.nan, False], dtype=expected_dtype)
- tm.assert_series_equal(result, expected)
- result = values.str.match("\\^BAD[_]+.*BAD")
- expected = Series([False, True, np.nan, False], dtype=expected_dtype)
- tm.assert_series_equal(result, expected)
- def test_match_mixed_object():
- mixed = Series(
- [
- "aBAD_BAD",
- np.nan,
- "BAD_b_BAD",
- True,
- datetime.today(),
- "foo",
- None,
- 1,
- 2.0,
- ]
- )
- result = Series(mixed).str.match(".*(BAD[_]+).*(BAD)")
- expected = Series(
- [True, np.nan, True, np.nan, np.nan, False, np.nan, np.nan, np.nan]
- )
- assert isinstance(result, Series)
- tm.assert_series_equal(result, expected)
- def test_match_na_kwarg(any_string_dtype):
- # GH #6609
- s = Series(["a", "b", np.nan], dtype=any_string_dtype)
- result = s.str.match("a", na=False)
- expected_dtype = np.bool_ if any_string_dtype == "object" else "boolean"
- expected = Series([True, False, False], dtype=expected_dtype)
- tm.assert_series_equal(result, expected)
- result = s.str.match("a")
- expected_dtype = "object" if any_string_dtype == "object" else "boolean"
- expected = Series([True, False, np.nan], dtype=expected_dtype)
- tm.assert_series_equal(result, expected)
- def test_match_case_kwarg(any_string_dtype):
- values = Series(["ab", "AB", "abc", "ABC"], dtype=any_string_dtype)
- with tm.maybe_produces_warning(
- PerformanceWarning, any_string_dtype == "string[pyarrow]"
- ):
- result = values.str.match("ab", case=False)
- expected_dtype = np.bool_ if any_string_dtype == "object" else "boolean"
- expected = Series([True, True, True, True], dtype=expected_dtype)
- tm.assert_series_equal(result, expected)
- # --------------------------------------------------------------------------------------
- # str.fullmatch
- # --------------------------------------------------------------------------------------
- def test_fullmatch(any_string_dtype):
- # GH 32806
- ser = Series(
- ["fooBAD__barBAD", "BAD_BADleroybrown", np.nan, "foo"], dtype=any_string_dtype
- )
- result = ser.str.fullmatch(".*BAD[_]+.*BAD")
- expected_dtype = "object" if any_string_dtype == "object" else "boolean"
- expected = Series([True, False, np.nan, False], dtype=expected_dtype)
- tm.assert_series_equal(result, expected)
- def test_fullmatch_na_kwarg(any_string_dtype):
- ser = Series(
- ["fooBAD__barBAD", "BAD_BADleroybrown", np.nan, "foo"], dtype=any_string_dtype
- )
- result = ser.str.fullmatch(".*BAD[_]+.*BAD", na=False)
- expected_dtype = np.bool_ if any_string_dtype == "object" else "boolean"
- expected = Series([True, False, False, False], dtype=expected_dtype)
- tm.assert_series_equal(result, expected)
- def test_fullmatch_case_kwarg(any_string_dtype):
- ser = Series(["ab", "AB", "abc", "ABC"], dtype=any_string_dtype)
- expected_dtype = np.bool_ if any_string_dtype == "object" else "boolean"
- expected = Series([True, False, False, False], dtype=expected_dtype)
- result = ser.str.fullmatch("ab", case=True)
- tm.assert_series_equal(result, expected)
- expected = Series([True, True, False, False], dtype=expected_dtype)
- with tm.maybe_produces_warning(
- PerformanceWarning, any_string_dtype == "string[pyarrow]"
- ):
- result = ser.str.fullmatch("ab", case=False)
- tm.assert_series_equal(result, expected)
- with tm.maybe_produces_warning(
- PerformanceWarning, any_string_dtype == "string[pyarrow]"
- ):
- result = ser.str.fullmatch("ab", flags=re.IGNORECASE)
- tm.assert_series_equal(result, expected)
- # --------------------------------------------------------------------------------------
- # str.findall
- # --------------------------------------------------------------------------------------
- def test_findall(any_string_dtype):
- ser = Series(["fooBAD__barBAD", np.nan, "foo", "BAD"], dtype=any_string_dtype)
- result = ser.str.findall("BAD[_]*")
- expected = Series([["BAD__", "BAD"], np.nan, [], ["BAD"]])
- tm.assert_series_equal(result, expected)
- def test_findall_mixed_object():
- ser = Series(
- [
- "fooBAD__barBAD",
- np.nan,
- "foo",
- True,
- datetime.today(),
- "BAD",
- None,
- 1,
- 2.0,
- ]
- )
- result = ser.str.findall("BAD[_]*")
- expected = Series(
- [
- ["BAD__", "BAD"],
- np.nan,
- [],
- np.nan,
- np.nan,
- ["BAD"],
- np.nan,
- np.nan,
- np.nan,
- ]
- )
- tm.assert_series_equal(result, expected)
- # --------------------------------------------------------------------------------------
- # str.find
- # --------------------------------------------------------------------------------------
- def test_find(any_string_dtype):
- ser = Series(
- ["ABCDEFG", "BCDEFEF", "DEFGHIJEF", "EFGHEF", "XXXX"], dtype=any_string_dtype
- )
- expected_dtype = np.int64 if any_string_dtype == "object" else "Int64"
- result = ser.str.find("EF")
- expected = Series([4, 3, 1, 0, -1], dtype=expected_dtype)
- tm.assert_series_equal(result, expected)
- expected = np.array([v.find("EF") for v in np.array(ser)], dtype=np.int64)
- tm.assert_numpy_array_equal(np.array(result, dtype=np.int64), expected)
- result = ser.str.rfind("EF")
- expected = Series([4, 5, 7, 4, -1], dtype=expected_dtype)
- tm.assert_series_equal(result, expected)
- expected = np.array([v.rfind("EF") for v in np.array(ser)], dtype=np.int64)
- tm.assert_numpy_array_equal(np.array(result, dtype=np.int64), expected)
- result = ser.str.find("EF", 3)
- expected = Series([4, 3, 7, 4, -1], dtype=expected_dtype)
- tm.assert_series_equal(result, expected)
- expected = np.array([v.find("EF", 3) for v in np.array(ser)], dtype=np.int64)
- tm.assert_numpy_array_equal(np.array(result, dtype=np.int64), expected)
- result = ser.str.rfind("EF", 3)
- expected = Series([4, 5, 7, 4, -1], dtype=expected_dtype)
- tm.assert_series_equal(result, expected)
- expected = np.array([v.rfind("EF", 3) for v in np.array(ser)], dtype=np.int64)
- tm.assert_numpy_array_equal(np.array(result, dtype=np.int64), expected)
- result = ser.str.find("EF", 3, 6)
- expected = Series([4, 3, -1, 4, -1], dtype=expected_dtype)
- tm.assert_series_equal(result, expected)
- expected = np.array([v.find("EF", 3, 6) for v in np.array(ser)], dtype=np.int64)
- tm.assert_numpy_array_equal(np.array(result, dtype=np.int64), expected)
- result = ser.str.rfind("EF", 3, 6)
- expected = Series([4, 3, -1, 4, -1], dtype=expected_dtype)
- tm.assert_series_equal(result, expected)
- expected = np.array([v.rfind("EF", 3, 6) for v in np.array(ser)], dtype=np.int64)
- tm.assert_numpy_array_equal(np.array(result, dtype=np.int64), expected)
- def test_find_bad_arg_raises(any_string_dtype):
- ser = Series([], dtype=any_string_dtype)
- with pytest.raises(TypeError, match="expected a string object, not int"):
- ser.str.find(0)
- with pytest.raises(TypeError, match="expected a string object, not int"):
- ser.str.rfind(0)
- def test_find_nan(any_string_dtype):
- ser = Series(
- ["ABCDEFG", np.nan, "DEFGHIJEF", np.nan, "XXXX"], dtype=any_string_dtype
- )
- expected_dtype = np.float64 if any_string_dtype == "object" else "Int64"
- result = ser.str.find("EF")
- expected = Series([4, np.nan, 1, np.nan, -1], dtype=expected_dtype)
- tm.assert_series_equal(result, expected)
- result = ser.str.rfind("EF")
- expected = Series([4, np.nan, 7, np.nan, -1], dtype=expected_dtype)
- tm.assert_series_equal(result, expected)
- result = ser.str.find("EF", 3)
- expected = Series([4, np.nan, 7, np.nan, -1], dtype=expected_dtype)
- tm.assert_series_equal(result, expected)
- result = ser.str.rfind("EF", 3)
- expected = Series([4, np.nan, 7, np.nan, -1], dtype=expected_dtype)
- tm.assert_series_equal(result, expected)
- result = ser.str.find("EF", 3, 6)
- expected = Series([4, np.nan, -1, np.nan, -1], dtype=expected_dtype)
- tm.assert_series_equal(result, expected)
- result = ser.str.rfind("EF", 3, 6)
- expected = Series([4, np.nan, -1, np.nan, -1], dtype=expected_dtype)
- tm.assert_series_equal(result, expected)
- # --------------------------------------------------------------------------------------
- # str.translate
- # --------------------------------------------------------------------------------------
- def test_translate(index_or_series, any_string_dtype):
- obj = index_or_series(
- ["abcdefg", "abcc", "cdddfg", "cdefggg"], dtype=any_string_dtype
- )
- table = str.maketrans("abc", "cde")
- result = obj.str.translate(table)
- expected = index_or_series(
- ["cdedefg", "cdee", "edddfg", "edefggg"], dtype=any_string_dtype
- )
- tm.assert_equal(result, expected)
- def test_translate_mixed_object():
- # Series with non-string values
- s = Series(["a", "b", "c", 1.2])
- table = str.maketrans("abc", "cde")
- expected = Series(["c", "d", "e", np.nan])
- result = s.str.translate(table)
- tm.assert_series_equal(result, expected)
- # --------------------------------------------------------------------------------------
- def test_flags_kwarg(any_string_dtype):
- data = {
- "Dave": "dave@google.com",
- "Steve": "steve@gmail.com",
- "Rob": "rob@gmail.com",
- "Wes": np.nan,
- }
- data = Series(data, dtype=any_string_dtype)
- pat = r"([A-Z0-9._%+-]+)@([A-Z0-9.-]+)\.([A-Z]{2,4})"
- using_pyarrow = any_string_dtype == "string[pyarrow]"
- result = data.str.extract(pat, flags=re.IGNORECASE, expand=True)
- assert result.iloc[0].tolist() == ["dave", "google", "com"]
- with tm.maybe_produces_warning(PerformanceWarning, using_pyarrow):
- result = data.str.match(pat, flags=re.IGNORECASE)
- assert result[0]
- with tm.maybe_produces_warning(PerformanceWarning, using_pyarrow):
- result = data.str.fullmatch(pat, flags=re.IGNORECASE)
- assert result[0]
- result = data.str.findall(pat, flags=re.IGNORECASE)
- assert result[0][0] == ("dave", "google", "com")
- result = data.str.count(pat, flags=re.IGNORECASE)
- assert result[0] == 1
- msg = "has match groups"
- with tm.assert_produces_warning(
- UserWarning, match=msg, raise_on_extra_warnings=not using_pyarrow
- ):
- result = data.str.contains(pat, flags=re.IGNORECASE)
- assert result[0]
|