123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538 |
- from datetime import (
- datetime,
- timedelta,
- )
- import numpy as np
- import pytest
- import pandas as pd
- from pandas import (
- Categorical,
- DataFrame,
- Index,
- Series,
- date_range,
- option_context,
- period_range,
- timedelta_range,
- )
- import pandas._testing as tm
- class TestSeriesRepr:
- def test_multilevel_name_print(self, lexsorted_two_level_string_multiindex):
- index = lexsorted_two_level_string_multiindex
- ser = Series(range(len(index)), index=index, name="sth")
- expected = [
- "first second",
- "foo one 0",
- " two 1",
- " three 2",
- "bar one 3",
- " two 4",
- "baz two 5",
- " three 6",
- "qux one 7",
- " two 8",
- " three 9",
- "Name: sth, dtype: int64",
- ]
- expected = "\n".join(expected)
- assert repr(ser) == expected
- def test_small_name_printing(self):
- # Test small Series.
- s = Series([0, 1, 2])
- s.name = "test"
- assert "Name: test" in repr(s)
- s.name = None
- assert "Name:" not in repr(s)
- def test_big_name_printing(self):
- # Test big Series (diff code path).
- s = Series(range(1000))
- s.name = "test"
- assert "Name: test" in repr(s)
- s.name = None
- assert "Name:" not in repr(s)
- def test_empty_name_printing(self):
- s = Series(index=date_range("20010101", "20020101"), name="test", dtype=object)
- assert "Name: test" in repr(s)
- @pytest.mark.parametrize("args", [(), (0, -1)])
- def test_float_range(self, args):
- str(Series(np.random.randn(1000), index=np.arange(1000, *args)))
- def test_empty_object(self):
- # empty
- str(Series(dtype=object))
- def test_string(self, string_series):
- str(string_series)
- str(string_series.astype(int))
- # with NaNs
- string_series[5:7] = np.NaN
- str(string_series)
- def test_object(self, object_series):
- str(object_series)
- def test_datetime(self, datetime_series):
- str(datetime_series)
- # with Nones
- ots = datetime_series.astype("O")
- ots[::2] = None
- repr(ots)
- @pytest.mark.parametrize(
- "name",
- [
- "",
- 1,
- 1.2,
- "foo",
- "\u03B1\u03B2\u03B3",
- "loooooooooooooooooooooooooooooooooooooooooooooooooooong",
- ("foo", "bar", "baz"),
- (1, 2),
- ("foo", 1, 2.3),
- ("\u03B1", "\u03B2", "\u03B3"),
- ("\u03B1", "bar"),
- ],
- )
- def test_various_names(self, name, string_series):
- # various names
- string_series.name = name
- repr(string_series)
- def test_tuple_name(self):
- biggie = Series(
- np.random.randn(1000), index=np.arange(1000), name=("foo", "bar", "baz")
- )
- repr(biggie)
- @pytest.mark.parametrize("arg", [100, 1001])
- def test_tidy_repr_name_0(self, arg):
- # tidy repr
- ser = Series(np.random.randn(arg), name=0)
- rep_str = repr(ser)
- assert "Name: 0" in rep_str
- def test_newline(self):
- ser = Series(["a\n\r\tb"], name="a\n\r\td", index=["a\n\r\tf"])
- assert "\t" not in repr(ser)
- assert "\r" not in repr(ser)
- assert "a\n" not in repr(ser)
- @pytest.mark.parametrize(
- "name, expected",
- [
- ["foo", "Series([], Name: foo, dtype: int64)"],
- [None, "Series([], dtype: int64)"],
- ],
- )
- def test_empty_int64(self, name, expected):
- # with empty series (#4651)
- s = Series([], dtype=np.int64, name=name)
- assert repr(s) == expected
- def test_tidy_repr(self):
- a = Series(["\u05d0"] * 1000)
- a.name = "title1"
- repr(a) # should not raise exception
- def test_repr_bool_fails(self, capsys):
- s = Series([DataFrame(np.random.randn(2, 2)) for i in range(5)])
- # It works (with no Cython exception barf)!
- repr(s)
- captured = capsys.readouterr()
- assert captured.err == ""
- def test_repr_name_iterable_indexable(self):
- s = Series([1, 2, 3], name=np.int64(3))
- # it works!
- repr(s)
- s.name = ("\u05d0",) * 2
- repr(s)
- def test_repr_should_return_str(self):
- # https://docs.python.org/3/reference/datamodel.html#object.__repr__
- # ...The return value must be a string object.
- # (str on py2.x, str (unicode) on py3)
- data = [8, 5, 3, 5]
- index1 = ["\u03c3", "\u03c4", "\u03c5", "\u03c6"]
- df = Series(data, index=index1)
- assert type(df.__repr__() == str) # both py2 / 3
- def test_repr_max_rows(self):
- # GH 6863
- with option_context("display.max_rows", None):
- str(Series(range(1001))) # should not raise exception
- def test_unicode_string_with_unicode(self):
- df = Series(["\u05d0"], name="\u05d1")
- str(df)
- def test_str_to_bytes_raises(self):
- # GH 26447
- df = Series(["abc"], name="abc")
- msg = "^'str' object cannot be interpreted as an integer$"
- with pytest.raises(TypeError, match=msg):
- bytes(df)
- def test_timeseries_repr_object_dtype(self):
- index = Index(
- [datetime(2000, 1, 1) + timedelta(i) for i in range(1000)], dtype=object
- )
- ts = Series(np.random.randn(len(index)), index)
- repr(ts)
- ts = tm.makeTimeSeries(1000)
- assert repr(ts).splitlines()[-1].startswith("Freq:")
- ts2 = ts.iloc[np.random.randint(0, len(ts) - 1, 400)]
- repr(ts2).splitlines()[-1]
- def test_latex_repr(self):
- pytest.importorskip("jinja2") # uses Styler implementation
- result = r"""\begin{tabular}{ll}
- \toprule
- & 0 \\
- \midrule
- 0 & $\alpha$ \\
- 1 & b \\
- 2 & c \\
- \bottomrule
- \end{tabular}
- """
- with option_context(
- "styler.format.escape", None, "styler.render.repr", "latex"
- ):
- s = Series([r"$\alpha$", "b", "c"])
- assert result == s._repr_latex_()
- assert s._repr_latex_() is None
- def test_index_repr_in_frame_with_nan(self):
- # see gh-25061
- i = Index([1, np.nan])
- s = Series([1, 2], index=i)
- exp = """1.0 1\nNaN 2\ndtype: int64"""
- assert repr(s) == exp
- def test_format_pre_1900_dates(self):
- rng = date_range("1/1/1850", "1/1/1950", freq="A-DEC")
- rng.format()
- ts = Series(1, index=rng)
- repr(ts)
- def test_series_repr_nat(self):
- series = Series([0, 1000, 2000, pd.NaT._value], dtype="M8[ns]")
- result = repr(series)
- expected = (
- "0 1970-01-01 00:00:00.000000\n"
- "1 1970-01-01 00:00:00.000001\n"
- "2 1970-01-01 00:00:00.000002\n"
- "3 NaT\n"
- "dtype: datetime64[ns]"
- )
- assert result == expected
- def test_float_repr(self):
- # GH#35603
- # check float format when cast to object
- ser = Series([1.0]).astype(object)
- expected = "0 1.0\ndtype: object"
- assert repr(ser) == expected
- def test_different_null_objects(self):
- # GH#45263
- ser = Series([1, 2, 3, 4], [True, None, np.nan, pd.NaT])
- result = repr(ser)
- expected = "True 1\nNone 2\nNaN 3\nNaT 4\ndtype: int64"
- assert result == expected
- class TestCategoricalRepr:
- def test_categorical_repr_unicode(self):
- # see gh-21002
- class County:
- name = "San Sebastián"
- state = "PR"
- def __repr__(self) -> str:
- return self.name + ", " + self.state
- cat = Categorical([County() for _ in range(61)])
- idx = Index(cat)
- ser = idx.to_series()
- repr(ser)
- str(ser)
- def test_categorical_repr(self):
- a = Series(Categorical([1, 2, 3, 4]))
- exp = (
- "0 1\n1 2\n2 3\n3 4\n"
- + "dtype: category\nCategories (4, int64): [1, 2, 3, 4]"
- )
- assert exp == a.__str__()
- a = Series(Categorical(["a", "b"] * 25))
- exp = (
- "0 a\n1 b\n"
- + " ..\n"
- + "48 a\n49 b\n"
- + "Length: 50, dtype: category\nCategories (2, object): ['a', 'b']"
- )
- with option_context("display.max_rows", 5):
- assert exp == repr(a)
- levs = list("abcdefghijklmnopqrstuvwxyz")
- a = Series(Categorical(["a", "b"], categories=levs, ordered=True))
- exp = (
- "0 a\n1 b\n" + "dtype: category\n"
- "Categories (26, object): ['a' < 'b' < 'c' < 'd' ... 'w' < 'x' < 'y' < 'z']"
- )
- assert exp == a.__str__()
- def test_categorical_series_repr(self):
- s = Series(Categorical([1, 2, 3]))
- exp = """0 1
- 1 2
- 2 3
- dtype: category
- Categories (3, int64): [1, 2, 3]"""
- assert repr(s) == exp
- s = Series(Categorical(np.arange(10)))
- exp = f"""0 0
- 1 1
- 2 2
- 3 3
- 4 4
- 5 5
- 6 6
- 7 7
- 8 8
- 9 9
- dtype: category
- Categories (10, {np.int_().dtype}): [0, 1, 2, 3, ..., 6, 7, 8, 9]"""
- assert repr(s) == exp
- def test_categorical_series_repr_ordered(self):
- s = Series(Categorical([1, 2, 3], ordered=True))
- exp = """0 1
- 1 2
- 2 3
- dtype: category
- Categories (3, int64): [1 < 2 < 3]"""
- assert repr(s) == exp
- s = Series(Categorical(np.arange(10), ordered=True))
- exp = f"""0 0
- 1 1
- 2 2
- 3 3
- 4 4
- 5 5
- 6 6
- 7 7
- 8 8
- 9 9
- dtype: category
- Categories (10, {np.int_().dtype}): [0 < 1 < 2 < 3 ... 6 < 7 < 8 < 9]"""
- assert repr(s) == exp
- def test_categorical_series_repr_datetime(self):
- idx = date_range("2011-01-01 09:00", freq="H", periods=5)
- s = Series(Categorical(idx))
- exp = """0 2011-01-01 09:00:00
- 1 2011-01-01 10:00:00
- 2 2011-01-01 11:00:00
- 3 2011-01-01 12:00:00
- 4 2011-01-01 13:00:00
- dtype: category
- Categories (5, datetime64[ns]): [2011-01-01 09:00:00, 2011-01-01 10:00:00, 2011-01-01 11:00:00,
- 2011-01-01 12:00:00, 2011-01-01 13:00:00]""" # noqa:E501
- assert repr(s) == exp
- idx = date_range("2011-01-01 09:00", freq="H", periods=5, tz="US/Eastern")
- s = Series(Categorical(idx))
- exp = """0 2011-01-01 09:00:00-05:00
- 1 2011-01-01 10:00:00-05:00
- 2 2011-01-01 11:00:00-05:00
- 3 2011-01-01 12:00:00-05:00
- 4 2011-01-01 13:00:00-05:00
- dtype: category
- Categories (5, datetime64[ns, US/Eastern]): [2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00,
- 2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00,
- 2011-01-01 13:00:00-05:00]""" # noqa:E501
- assert repr(s) == exp
- def test_categorical_series_repr_datetime_ordered(self):
- idx = date_range("2011-01-01 09:00", freq="H", periods=5)
- s = Series(Categorical(idx, ordered=True))
- exp = """0 2011-01-01 09:00:00
- 1 2011-01-01 10:00:00
- 2 2011-01-01 11:00:00
- 3 2011-01-01 12:00:00
- 4 2011-01-01 13:00:00
- dtype: category
- Categories (5, datetime64[ns]): [2011-01-01 09:00:00 < 2011-01-01 10:00:00 < 2011-01-01 11:00:00 <
- 2011-01-01 12:00:00 < 2011-01-01 13:00:00]""" # noqa:E501
- assert repr(s) == exp
- idx = date_range("2011-01-01 09:00", freq="H", periods=5, tz="US/Eastern")
- s = Series(Categorical(idx, ordered=True))
- exp = """0 2011-01-01 09:00:00-05:00
- 1 2011-01-01 10:00:00-05:00
- 2 2011-01-01 11:00:00-05:00
- 3 2011-01-01 12:00:00-05:00
- 4 2011-01-01 13:00:00-05:00
- dtype: category
- Categories (5, datetime64[ns, US/Eastern]): [2011-01-01 09:00:00-05:00 < 2011-01-01 10:00:00-05:00 <
- 2011-01-01 11:00:00-05:00 < 2011-01-01 12:00:00-05:00 <
- 2011-01-01 13:00:00-05:00]""" # noqa:E501
- assert repr(s) == exp
- def test_categorical_series_repr_period(self):
- idx = period_range("2011-01-01 09:00", freq="H", periods=5)
- s = Series(Categorical(idx))
- exp = """0 2011-01-01 09:00
- 1 2011-01-01 10:00
- 2 2011-01-01 11:00
- 3 2011-01-01 12:00
- 4 2011-01-01 13:00
- dtype: category
- Categories (5, period[H]): [2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00,
- 2011-01-01 13:00]""" # noqa:E501
- assert repr(s) == exp
- idx = period_range("2011-01", freq="M", periods=5)
- s = Series(Categorical(idx))
- exp = """0 2011-01
- 1 2011-02
- 2 2011-03
- 3 2011-04
- 4 2011-05
- dtype: category
- Categories (5, period[M]): [2011-01, 2011-02, 2011-03, 2011-04, 2011-05]"""
- assert repr(s) == exp
- def test_categorical_series_repr_period_ordered(self):
- idx = period_range("2011-01-01 09:00", freq="H", periods=5)
- s = Series(Categorical(idx, ordered=True))
- exp = """0 2011-01-01 09:00
- 1 2011-01-01 10:00
- 2 2011-01-01 11:00
- 3 2011-01-01 12:00
- 4 2011-01-01 13:00
- dtype: category
- Categories (5, period[H]): [2011-01-01 09:00 < 2011-01-01 10:00 < 2011-01-01 11:00 < 2011-01-01 12:00 <
- 2011-01-01 13:00]""" # noqa:E501
- assert repr(s) == exp
- idx = period_range("2011-01", freq="M", periods=5)
- s = Series(Categorical(idx, ordered=True))
- exp = """0 2011-01
- 1 2011-02
- 2 2011-03
- 3 2011-04
- 4 2011-05
- dtype: category
- Categories (5, period[M]): [2011-01 < 2011-02 < 2011-03 < 2011-04 < 2011-05]"""
- assert repr(s) == exp
- def test_categorical_series_repr_timedelta(self):
- idx = timedelta_range("1 days", periods=5)
- s = Series(Categorical(idx))
- exp = """0 1 days
- 1 2 days
- 2 3 days
- 3 4 days
- 4 5 days
- dtype: category
- Categories (5, timedelta64[ns]): [1 days, 2 days, 3 days, 4 days, 5 days]"""
- assert repr(s) == exp
- idx = timedelta_range("1 hours", periods=10)
- s = Series(Categorical(idx))
- exp = """0 0 days 01:00:00
- 1 1 days 01:00:00
- 2 2 days 01:00:00
- 3 3 days 01:00:00
- 4 4 days 01:00:00
- 5 5 days 01:00:00
- 6 6 days 01:00:00
- 7 7 days 01:00:00
- 8 8 days 01:00:00
- 9 9 days 01:00:00
- dtype: category
- Categories (10, timedelta64[ns]): [0 days 01:00:00, 1 days 01:00:00, 2 days 01:00:00,
- 3 days 01:00:00, ..., 6 days 01:00:00, 7 days 01:00:00,
- 8 days 01:00:00, 9 days 01:00:00]""" # noqa:E501
- assert repr(s) == exp
- def test_categorical_series_repr_timedelta_ordered(self):
- idx = timedelta_range("1 days", periods=5)
- s = Series(Categorical(idx, ordered=True))
- exp = """0 1 days
- 1 2 days
- 2 3 days
- 3 4 days
- 4 5 days
- dtype: category
- Categories (5, timedelta64[ns]): [1 days < 2 days < 3 days < 4 days < 5 days]"""
- assert repr(s) == exp
- idx = timedelta_range("1 hours", periods=10)
- s = Series(Categorical(idx, ordered=True))
- exp = """0 0 days 01:00:00
- 1 1 days 01:00:00
- 2 2 days 01:00:00
- 3 3 days 01:00:00
- 4 4 days 01:00:00
- 5 5 days 01:00:00
- 6 6 days 01:00:00
- 7 7 days 01:00:00
- 8 8 days 01:00:00
- 9 9 days 01:00:00
- dtype: category
- Categories (10, timedelta64[ns]): [0 days 01:00:00 < 1 days 01:00:00 < 2 days 01:00:00 <
- 3 days 01:00:00 ... 6 days 01:00:00 < 7 days 01:00:00 <
- 8 days 01:00:00 < 9 days 01:00:00]""" # noqa:E501
- assert repr(s) == exp
|