test_unstack.py 4.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162
  1. import numpy as np
  2. import pytest
  3. import pandas as pd
  4. from pandas import (
  5. DataFrame,
  6. MultiIndex,
  7. Series,
  8. )
  9. import pandas._testing as tm
  10. def test_unstack_preserves_object():
  11. mi = MultiIndex.from_product([["bar", "foo"], ["one", "two"]])
  12. ser = Series(np.arange(4.0), index=mi, dtype=object)
  13. res1 = ser.unstack()
  14. assert (res1.dtypes == object).all()
  15. res2 = ser.unstack(level=0)
  16. assert (res2.dtypes == object).all()
  17. def test_unstack():
  18. index = MultiIndex(
  19. levels=[["bar", "foo"], ["one", "three", "two"]],
  20. codes=[[1, 1, 0, 0], [0, 1, 0, 2]],
  21. )
  22. s = Series(np.arange(4.0), index=index)
  23. unstacked = s.unstack()
  24. expected = DataFrame(
  25. [[2.0, np.nan, 3.0], [0.0, 1.0, np.nan]],
  26. index=["bar", "foo"],
  27. columns=["one", "three", "two"],
  28. )
  29. tm.assert_frame_equal(unstacked, expected)
  30. unstacked = s.unstack(level=0)
  31. tm.assert_frame_equal(unstacked, expected.T)
  32. index = MultiIndex(
  33. levels=[["bar"], ["one", "two", "three"], [0, 1]],
  34. codes=[[0, 0, 0, 0, 0, 0], [0, 1, 2, 0, 1, 2], [0, 1, 0, 1, 0, 1]],
  35. )
  36. s = Series(np.random.randn(6), index=index)
  37. exp_index = MultiIndex(
  38. levels=[["one", "two", "three"], [0, 1]],
  39. codes=[[0, 1, 2, 0, 1, 2], [0, 1, 0, 1, 0, 1]],
  40. )
  41. expected = DataFrame({"bar": s.values}, index=exp_index).sort_index(level=0)
  42. unstacked = s.unstack(0).sort_index()
  43. tm.assert_frame_equal(unstacked, expected)
  44. # GH5873
  45. idx = MultiIndex.from_arrays([[101, 102], [3.5, np.nan]])
  46. ts = Series([1, 2], index=idx)
  47. left = ts.unstack()
  48. right = DataFrame(
  49. [[np.nan, 1], [2, np.nan]], index=[101, 102], columns=[np.nan, 3.5]
  50. )
  51. tm.assert_frame_equal(left, right)
  52. idx = MultiIndex.from_arrays(
  53. [
  54. ["cat", "cat", "cat", "dog", "dog"],
  55. ["a", "a", "b", "a", "b"],
  56. [1, 2, 1, 1, np.nan],
  57. ]
  58. )
  59. ts = Series([1.0, 1.1, 1.2, 1.3, 1.4], index=idx)
  60. right = DataFrame(
  61. [[1.0, 1.3], [1.1, np.nan], [np.nan, 1.4], [1.2, np.nan]],
  62. columns=["cat", "dog"],
  63. )
  64. tpls = [("a", 1), ("a", 2), ("b", np.nan), ("b", 1)]
  65. right.index = MultiIndex.from_tuples(tpls)
  66. tm.assert_frame_equal(ts.unstack(level=0), right)
  67. def test_unstack_tuplename_in_multiindex():
  68. # GH 19966
  69. idx = MultiIndex.from_product(
  70. [["a", "b", "c"], [1, 2, 3]], names=[("A", "a"), ("B", "b")]
  71. )
  72. ser = Series(1, index=idx)
  73. result = ser.unstack(("A", "a"))
  74. expected = DataFrame(
  75. [[1, 1, 1], [1, 1, 1], [1, 1, 1]],
  76. columns=MultiIndex.from_tuples([("a",), ("b",), ("c",)], names=[("A", "a")]),
  77. index=pd.Index([1, 2, 3], name=("B", "b")),
  78. )
  79. tm.assert_frame_equal(result, expected)
  80. @pytest.mark.parametrize(
  81. "unstack_idx, expected_values, expected_index, expected_columns",
  82. [
  83. (
  84. ("A", "a"),
  85. [[1, 1], [1, 1], [1, 1], [1, 1]],
  86. MultiIndex.from_tuples([(1, 3), (1, 4), (2, 3), (2, 4)], names=["B", "C"]),
  87. MultiIndex.from_tuples([("a",), ("b",)], names=[("A", "a")]),
  88. ),
  89. (
  90. (("A", "a"), "B"),
  91. [[1, 1, 1, 1], [1, 1, 1, 1]],
  92. pd.Index([3, 4], name="C"),
  93. MultiIndex.from_tuples(
  94. [("a", 1), ("a", 2), ("b", 1), ("b", 2)], names=[("A", "a"), "B"]
  95. ),
  96. ),
  97. ],
  98. )
  99. def test_unstack_mixed_type_name_in_multiindex(
  100. unstack_idx, expected_values, expected_index, expected_columns
  101. ):
  102. # GH 19966
  103. idx = MultiIndex.from_product(
  104. [["a", "b"], [1, 2], [3, 4]], names=[("A", "a"), "B", "C"]
  105. )
  106. ser = Series(1, index=idx)
  107. result = ser.unstack(unstack_idx)
  108. expected = DataFrame(
  109. expected_values, columns=expected_columns, index=expected_index
  110. )
  111. tm.assert_frame_equal(result, expected)
  112. def test_unstack_multi_index_categorical_values():
  113. mi = tm.makeTimeDataFrame().stack().index.rename(["major", "minor"])
  114. ser = Series(["foo"] * len(mi), index=mi, name="category", dtype="category")
  115. result = ser.unstack()
  116. dti = ser.index.levels[0]
  117. c = pd.Categorical(["foo"] * len(dti))
  118. expected = DataFrame(
  119. {"A": c.copy(), "B": c.copy(), "C": c.copy(), "D": c.copy()},
  120. columns=pd.Index(list("ABCD"), name="minor"),
  121. index=dti.rename("major"),
  122. )
  123. tm.assert_frame_equal(result, expected)
  124. def test_unstack_mixed_level_names():
  125. # GH#48763
  126. arrays = [["a", "a"], [1, 2], ["red", "blue"]]
  127. idx = MultiIndex.from_arrays(arrays, names=("x", 0, "y"))
  128. ser = Series([1, 2], index=idx)
  129. result = ser.unstack("x")
  130. expected = DataFrame(
  131. [[1], [2]],
  132. columns=pd.Index(["a"], name="x"),
  133. index=MultiIndex.from_tuples([(1, "red"), (2, "blue")], names=[0, "y"]),
  134. )
  135. tm.assert_frame_equal(result, expected)