test_replace.py 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727
  1. import re
  2. import numpy as np
  3. import pytest
  4. import pandas as pd
  5. import pandas._testing as tm
  6. from pandas.core.arrays import IntervalArray
  7. class TestSeriesReplace:
  8. def test_replace_explicit_none(self):
  9. # GH#36984 if the user explicitly passes value=None, give it to them
  10. ser = pd.Series([0, 0, ""], dtype=object)
  11. result = ser.replace("", None)
  12. expected = pd.Series([0, 0, None], dtype=object)
  13. tm.assert_series_equal(result, expected)
  14. # Cast column 2 to object to avoid implicit cast when setting entry to ""
  15. df = pd.DataFrame(np.zeros((3, 3))).astype({2: object})
  16. df.iloc[2, 2] = ""
  17. result = df.replace("", None)
  18. expected = pd.DataFrame(
  19. {
  20. 0: np.zeros(3),
  21. 1: np.zeros(3),
  22. 2: np.array([0.0, 0.0, None], dtype=object),
  23. }
  24. )
  25. assert expected.iloc[2, 2] is None
  26. tm.assert_frame_equal(result, expected)
  27. # GH#19998 same thing with object dtype
  28. ser = pd.Series([10, 20, 30, "a", "a", "b", "a"])
  29. result = ser.replace("a", None)
  30. expected = pd.Series([10, 20, 30, None, None, "b", None])
  31. assert expected.iloc[-1] is None
  32. tm.assert_series_equal(result, expected)
  33. def test_replace_noop_doesnt_downcast(self):
  34. # GH#44498
  35. ser = pd.Series([None, None, pd.Timestamp("2021-12-16 17:31")], dtype=object)
  36. res = ser.replace({np.nan: None}) # should be a no-op
  37. tm.assert_series_equal(res, ser)
  38. assert res.dtype == object
  39. # same thing but different calling convention
  40. res = ser.replace(np.nan, None)
  41. tm.assert_series_equal(res, ser)
  42. assert res.dtype == object
  43. def test_replace(self):
  44. N = 100
  45. ser = pd.Series(np.random.randn(N))
  46. ser[0:4] = np.nan
  47. ser[6:10] = 0
  48. # replace list with a single value
  49. return_value = ser.replace([np.nan], -1, inplace=True)
  50. assert return_value is None
  51. exp = ser.fillna(-1)
  52. tm.assert_series_equal(ser, exp)
  53. rs = ser.replace(0.0, np.nan)
  54. ser[ser == 0.0] = np.nan
  55. tm.assert_series_equal(rs, ser)
  56. ser = pd.Series(np.fabs(np.random.randn(N)), tm.makeDateIndex(N), dtype=object)
  57. ser[:5] = np.nan
  58. ser[6:10] = "foo"
  59. ser[20:30] = "bar"
  60. # replace list with a single value
  61. rs = ser.replace([np.nan, "foo", "bar"], -1)
  62. assert (rs[:5] == -1).all()
  63. assert (rs[6:10] == -1).all()
  64. assert (rs[20:30] == -1).all()
  65. assert (pd.isna(ser[:5])).all()
  66. # replace with different values
  67. rs = ser.replace({np.nan: -1, "foo": -2, "bar": -3})
  68. assert (rs[:5] == -1).all()
  69. assert (rs[6:10] == -2).all()
  70. assert (rs[20:30] == -3).all()
  71. assert (pd.isna(ser[:5])).all()
  72. # replace with different values with 2 lists
  73. rs2 = ser.replace([np.nan, "foo", "bar"], [-1, -2, -3])
  74. tm.assert_series_equal(rs, rs2)
  75. # replace inplace
  76. return_value = ser.replace([np.nan, "foo", "bar"], -1, inplace=True)
  77. assert return_value is None
  78. assert (ser[:5] == -1).all()
  79. assert (ser[6:10] == -1).all()
  80. assert (ser[20:30] == -1).all()
  81. def test_replace_nan_with_inf(self):
  82. ser = pd.Series([np.nan, 0, np.inf])
  83. tm.assert_series_equal(ser.replace(np.nan, 0), ser.fillna(0))
  84. ser = pd.Series([np.nan, 0, "foo", "bar", np.inf, None, pd.NaT])
  85. tm.assert_series_equal(ser.replace(np.nan, 0), ser.fillna(0))
  86. filled = ser.copy()
  87. filled[4] = 0
  88. tm.assert_series_equal(ser.replace(np.inf, 0), filled)
  89. def test_replace_listlike_value_listlike_target(self, datetime_series):
  90. ser = pd.Series(datetime_series.index)
  91. tm.assert_series_equal(ser.replace(np.nan, 0), ser.fillna(0))
  92. # malformed
  93. msg = r"Replacement lists must match in length\. Expecting 3 got 2"
  94. with pytest.raises(ValueError, match=msg):
  95. ser.replace([1, 2, 3], [np.nan, 0])
  96. # ser is dt64 so can't hold 1 or 2, so this replace is a no-op
  97. result = ser.replace([1, 2], [np.nan, 0])
  98. tm.assert_series_equal(result, ser)
  99. ser = pd.Series([0, 1, 2, 3, 4])
  100. result = ser.replace([0, 1, 2, 3, 4], [4, 3, 2, 1, 0])
  101. tm.assert_series_equal(result, pd.Series([4, 3, 2, 1, 0]))
  102. def test_replace_gh5319(self):
  103. # API change from 0.12?
  104. # GH 5319
  105. ser = pd.Series([0, np.nan, 2, 3, 4])
  106. expected = ser.ffill()
  107. result = ser.replace([np.nan])
  108. tm.assert_series_equal(result, expected)
  109. ser = pd.Series([0, np.nan, 2, 3, 4])
  110. expected = ser.ffill()
  111. result = ser.replace(np.nan)
  112. tm.assert_series_equal(result, expected)
  113. def test_replace_datetime64(self):
  114. # GH 5797
  115. ser = pd.Series(pd.date_range("20130101", periods=5))
  116. expected = ser.copy()
  117. expected.loc[2] = pd.Timestamp("20120101")
  118. result = ser.replace({pd.Timestamp("20130103"): pd.Timestamp("20120101")})
  119. tm.assert_series_equal(result, expected)
  120. result = ser.replace(pd.Timestamp("20130103"), pd.Timestamp("20120101"))
  121. tm.assert_series_equal(result, expected)
  122. def test_replace_nat_with_tz(self):
  123. # GH 11792: Test with replacing NaT in a list with tz data
  124. ts = pd.Timestamp("2015/01/01", tz="UTC")
  125. s = pd.Series([pd.NaT, pd.Timestamp("2015/01/01", tz="UTC")])
  126. result = s.replace([np.nan, pd.NaT], pd.Timestamp.min)
  127. expected = pd.Series([pd.Timestamp.min, ts], dtype=object)
  128. tm.assert_series_equal(expected, result)
  129. def test_replace_timedelta_td64(self):
  130. tdi = pd.timedelta_range(0, periods=5)
  131. ser = pd.Series(tdi)
  132. # Using a single dict argument means we go through replace_list
  133. result = ser.replace({ser[1]: ser[3]})
  134. expected = pd.Series([ser[0], ser[3], ser[2], ser[3], ser[4]])
  135. tm.assert_series_equal(result, expected)
  136. def test_replace_with_single_list(self):
  137. ser = pd.Series([0, 1, 2, 3, 4])
  138. result = ser.replace([1, 2, 3])
  139. tm.assert_series_equal(result, pd.Series([0, 0, 0, 0, 4]))
  140. s = ser.copy()
  141. return_value = s.replace([1, 2, 3], inplace=True)
  142. assert return_value is None
  143. tm.assert_series_equal(s, pd.Series([0, 0, 0, 0, 4]))
  144. # make sure things don't get corrupted when fillna call fails
  145. s = ser.copy()
  146. msg = (
  147. r"Invalid fill method\. Expecting pad \(ffill\) or backfill "
  148. r"\(bfill\)\. Got crash_cymbal"
  149. )
  150. with pytest.raises(ValueError, match=msg):
  151. return_value = s.replace([1, 2, 3], inplace=True, method="crash_cymbal")
  152. assert return_value is None
  153. tm.assert_series_equal(s, ser)
  154. def test_replace_mixed_types(self):
  155. ser = pd.Series(np.arange(5), dtype="int64")
  156. def check_replace(to_rep, val, expected):
  157. sc = ser.copy()
  158. result = ser.replace(to_rep, val)
  159. return_value = sc.replace(to_rep, val, inplace=True)
  160. assert return_value is None
  161. tm.assert_series_equal(expected, result)
  162. tm.assert_series_equal(expected, sc)
  163. # 3.0 can still be held in our int64 series, so we do not upcast GH#44940
  164. tr, v = [3], [3.0]
  165. check_replace(tr, v, ser)
  166. # Note this matches what we get with the scalars 3 and 3.0
  167. check_replace(tr[0], v[0], ser)
  168. # MUST upcast to float
  169. e = pd.Series([0, 1, 2, 3.5, 4])
  170. tr, v = [3], [3.5]
  171. check_replace(tr, v, e)
  172. # casts to object
  173. e = pd.Series([0, 1, 2, 3.5, "a"])
  174. tr, v = [3, 4], [3.5, "a"]
  175. check_replace(tr, v, e)
  176. # again casts to object
  177. e = pd.Series([0, 1, 2, 3.5, pd.Timestamp("20130101")])
  178. tr, v = [3, 4], [3.5, pd.Timestamp("20130101")]
  179. check_replace(tr, v, e)
  180. # casts to object
  181. e = pd.Series([0, 1, 2, 3.5, True], dtype="object")
  182. tr, v = [3, 4], [3.5, True]
  183. check_replace(tr, v, e)
  184. # test an object with dates + floats + integers + strings
  185. dr = pd.Series(pd.date_range("1/1/2001", "1/10/2001", freq="D"))
  186. result = dr.astype(object).replace([dr[0], dr[1], dr[2]], [1.0, 2, "a"])
  187. expected = pd.Series([1.0, 2, "a"] + dr[3:].tolist(), dtype=object)
  188. tm.assert_series_equal(result, expected)
  189. def test_replace_bool_with_string_no_op(self):
  190. s = pd.Series([True, False, True])
  191. result = s.replace("fun", "in-the-sun")
  192. tm.assert_series_equal(s, result)
  193. def test_replace_bool_with_string(self):
  194. # nonexistent elements
  195. s = pd.Series([True, False, True])
  196. result = s.replace(True, "2u")
  197. expected = pd.Series(["2u", False, "2u"])
  198. tm.assert_series_equal(expected, result)
  199. def test_replace_bool_with_bool(self):
  200. s = pd.Series([True, False, True])
  201. result = s.replace(True, False)
  202. expected = pd.Series([False] * len(s))
  203. tm.assert_series_equal(expected, result)
  204. def test_replace_with_dict_with_bool_keys(self):
  205. s = pd.Series([True, False, True])
  206. result = s.replace({"asdf": "asdb", True: "yes"})
  207. expected = pd.Series(["yes", False, "yes"])
  208. tm.assert_series_equal(result, expected)
  209. def test_replace_Int_with_na(self, any_int_ea_dtype):
  210. # GH 38267
  211. result = pd.Series([0, None], dtype=any_int_ea_dtype).replace(0, pd.NA)
  212. expected = pd.Series([pd.NA, pd.NA], dtype=any_int_ea_dtype)
  213. tm.assert_series_equal(result, expected)
  214. result = pd.Series([0, 1], dtype=any_int_ea_dtype).replace(0, pd.NA)
  215. result.replace(1, pd.NA, inplace=True)
  216. tm.assert_series_equal(result, expected)
  217. def test_replace2(self):
  218. N = 100
  219. ser = pd.Series(np.fabs(np.random.randn(N)), tm.makeDateIndex(N), dtype=object)
  220. ser[:5] = np.nan
  221. ser[6:10] = "foo"
  222. ser[20:30] = "bar"
  223. # replace list with a single value
  224. rs = ser.replace([np.nan, "foo", "bar"], -1)
  225. assert (rs[:5] == -1).all()
  226. assert (rs[6:10] == -1).all()
  227. assert (rs[20:30] == -1).all()
  228. assert (pd.isna(ser[:5])).all()
  229. # replace with different values
  230. rs = ser.replace({np.nan: -1, "foo": -2, "bar": -3})
  231. assert (rs[:5] == -1).all()
  232. assert (rs[6:10] == -2).all()
  233. assert (rs[20:30] == -3).all()
  234. assert (pd.isna(ser[:5])).all()
  235. # replace with different values with 2 lists
  236. rs2 = ser.replace([np.nan, "foo", "bar"], [-1, -2, -3])
  237. tm.assert_series_equal(rs, rs2)
  238. # replace inplace
  239. return_value = ser.replace([np.nan, "foo", "bar"], -1, inplace=True)
  240. assert return_value is None
  241. assert (ser[:5] == -1).all()
  242. assert (ser[6:10] == -1).all()
  243. assert (ser[20:30] == -1).all()
  244. @pytest.mark.parametrize("inplace", [True, False])
  245. def test_replace_cascade(self, inplace):
  246. # Test that replaced values are not replaced again
  247. # GH #50778
  248. ser = pd.Series([1, 2, 3])
  249. expected = pd.Series([2, 3, 4])
  250. res = ser.replace([1, 2, 3], [2, 3, 4], inplace=inplace)
  251. if inplace:
  252. tm.assert_series_equal(ser, expected)
  253. else:
  254. tm.assert_series_equal(res, expected)
  255. def test_replace_with_dictlike_and_string_dtype(self, nullable_string_dtype):
  256. # GH 32621, GH#44940
  257. ser = pd.Series(["one", "two", np.nan], dtype=nullable_string_dtype)
  258. expected = pd.Series(["1", "2", np.nan], dtype=nullable_string_dtype)
  259. result = ser.replace({"one": "1", "two": "2"})
  260. tm.assert_series_equal(expected, result)
  261. def test_replace_with_empty_dictlike(self):
  262. # GH 15289
  263. s = pd.Series(list("abcd"))
  264. tm.assert_series_equal(s, s.replace({}))
  265. empty_series = pd.Series([])
  266. tm.assert_series_equal(s, s.replace(empty_series))
  267. def test_replace_string_with_number(self):
  268. # GH 15743
  269. s = pd.Series([1, 2, 3])
  270. result = s.replace("2", np.nan)
  271. expected = pd.Series([1, 2, 3])
  272. tm.assert_series_equal(expected, result)
  273. def test_replace_replacer_equals_replacement(self):
  274. # GH 20656
  275. # make sure all replacers are matching against original values
  276. s = pd.Series(["a", "b"])
  277. expected = pd.Series(["b", "a"])
  278. result = s.replace({"a": "b", "b": "a"})
  279. tm.assert_series_equal(expected, result)
  280. def test_replace_unicode_with_number(self):
  281. # GH 15743
  282. s = pd.Series([1, 2, 3])
  283. result = s.replace("2", np.nan)
  284. expected = pd.Series([1, 2, 3])
  285. tm.assert_series_equal(expected, result)
  286. def test_replace_mixed_types_with_string(self):
  287. # Testing mixed
  288. s = pd.Series([1, 2, 3, "4", 4, 5])
  289. result = s.replace([2, "4"], np.nan)
  290. expected = pd.Series([1, np.nan, 3, np.nan, 4, 5])
  291. tm.assert_series_equal(expected, result)
  292. @pytest.mark.parametrize(
  293. "categorical, numeric",
  294. [
  295. (pd.Categorical(["A"], categories=["A", "B"]), [1]),
  296. (pd.Categorical(["A", "B"], categories=["A", "B"]), [1, 2]),
  297. ],
  298. )
  299. def test_replace_categorical(self, categorical, numeric):
  300. # GH 24971, GH#23305
  301. ser = pd.Series(categorical)
  302. result = ser.replace({"A": 1, "B": 2})
  303. expected = pd.Series(numeric).astype("category")
  304. if 2 not in expected.cat.categories:
  305. # i.e. categories should be [1, 2] even if there are no "B"s present
  306. # GH#44940
  307. expected = expected.cat.add_categories(2)
  308. tm.assert_series_equal(expected, result)
  309. def test_replace_categorical_single(self):
  310. # GH 26988
  311. dti = pd.date_range("2016-01-01", periods=3, tz="US/Pacific")
  312. s = pd.Series(dti)
  313. c = s.astype("category")
  314. expected = c.copy()
  315. expected = expected.cat.add_categories("foo")
  316. expected[2] = "foo"
  317. expected = expected.cat.remove_unused_categories()
  318. assert c[2] != "foo"
  319. result = c.replace(c[2], "foo")
  320. tm.assert_series_equal(expected, result)
  321. assert c[2] != "foo" # ensure non-inplace call does not alter original
  322. return_value = c.replace(c[2], "foo", inplace=True)
  323. assert return_value is None
  324. tm.assert_series_equal(expected, c)
  325. first_value = c[0]
  326. return_value = c.replace(c[1], c[0], inplace=True)
  327. assert return_value is None
  328. assert c[0] == c[1] == first_value # test replacing with existing value
  329. def test_replace_with_no_overflowerror(self):
  330. # GH 25616
  331. # casts to object without Exception from OverflowError
  332. s = pd.Series([0, 1, 2, 3, 4])
  333. result = s.replace([3], ["100000000000000000000"])
  334. expected = pd.Series([0, 1, 2, "100000000000000000000", 4])
  335. tm.assert_series_equal(result, expected)
  336. s = pd.Series([0, "100000000000000000000", "100000000000000000001"])
  337. result = s.replace(["100000000000000000000"], [1])
  338. expected = pd.Series([0, 1, "100000000000000000001"])
  339. tm.assert_series_equal(result, expected)
  340. @pytest.mark.parametrize(
  341. "ser, to_replace, exp",
  342. [
  343. ([1, 2, 3], {1: 2, 2: 3, 3: 4}, [2, 3, 4]),
  344. (["1", "2", "3"], {"1": "2", "2": "3", "3": "4"}, ["2", "3", "4"]),
  345. ],
  346. )
  347. def test_replace_commutative(self, ser, to_replace, exp):
  348. # GH 16051
  349. # DataFrame.replace() overwrites when values are non-numeric
  350. series = pd.Series(ser)
  351. expected = pd.Series(exp)
  352. result = series.replace(to_replace)
  353. tm.assert_series_equal(result, expected)
  354. @pytest.mark.parametrize(
  355. "ser, exp", [([1, 2, 3], [1, True, 3]), (["x", 2, 3], ["x", True, 3])]
  356. )
  357. def test_replace_no_cast(self, ser, exp):
  358. # GH 9113
  359. # BUG: replace int64 dtype with bool coerces to int64
  360. series = pd.Series(ser)
  361. result = series.replace(2, True)
  362. expected = pd.Series(exp)
  363. tm.assert_series_equal(result, expected)
  364. def test_replace_invalid_to_replace(self):
  365. # GH 18634
  366. # API: replace() should raise an exception if invalid argument is given
  367. series = pd.Series(["a", "b", "c "])
  368. msg = (
  369. r"Expecting 'to_replace' to be either a scalar, array-like, "
  370. r"dict or None, got invalid type.*"
  371. )
  372. with pytest.raises(TypeError, match=msg):
  373. series.replace(lambda x: x.strip())
  374. @pytest.mark.parametrize("frame", [False, True])
  375. def test_replace_nonbool_regex(self, frame):
  376. obj = pd.Series(["a", "b", "c "])
  377. if frame:
  378. obj = obj.to_frame()
  379. msg = "'to_replace' must be 'None' if 'regex' is not a bool"
  380. with pytest.raises(ValueError, match=msg):
  381. obj.replace(to_replace=["a"], regex="foo")
  382. @pytest.mark.parametrize("frame", [False, True])
  383. def test_replace_empty_copy(self, frame):
  384. obj = pd.Series([], dtype=np.float64)
  385. if frame:
  386. obj = obj.to_frame()
  387. res = obj.replace(4, 5, inplace=True)
  388. assert res is None
  389. res = obj.replace(4, 5, inplace=False)
  390. tm.assert_equal(res, obj)
  391. assert res is not obj
  392. def test_replace_only_one_dictlike_arg(self, fixed_now_ts):
  393. # GH#33340
  394. ser = pd.Series([1, 2, "A", fixed_now_ts, True])
  395. to_replace = {0: 1, 2: "A"}
  396. value = "foo"
  397. msg = "Series.replace cannot use dict-like to_replace and non-None value"
  398. with pytest.raises(ValueError, match=msg):
  399. ser.replace(to_replace, value)
  400. to_replace = 1
  401. value = {0: "foo", 2: "bar"}
  402. msg = "Series.replace cannot use dict-value and non-None to_replace"
  403. with pytest.raises(ValueError, match=msg):
  404. ser.replace(to_replace, value)
  405. def test_replace_extension_other(self, frame_or_series):
  406. # https://github.com/pandas-dev/pandas/issues/34530
  407. obj = frame_or_series(pd.array([1, 2, 3], dtype="Int64"))
  408. result = obj.replace("", "") # no exception
  409. # should not have changed dtype
  410. tm.assert_equal(obj, result)
  411. def _check_replace_with_method(self, ser: pd.Series):
  412. df = ser.to_frame()
  413. res = ser.replace(ser[1], method="pad")
  414. expected = pd.Series([ser[0], ser[0]] + list(ser[2:]), dtype=ser.dtype)
  415. tm.assert_series_equal(res, expected)
  416. res_df = df.replace(ser[1], method="pad")
  417. tm.assert_frame_equal(res_df, expected.to_frame())
  418. ser2 = ser.copy()
  419. res2 = ser2.replace(ser[1], method="pad", inplace=True)
  420. assert res2 is None
  421. tm.assert_series_equal(ser2, expected)
  422. res_df2 = df.replace(ser[1], method="pad", inplace=True)
  423. assert res_df2 is None
  424. tm.assert_frame_equal(df, expected.to_frame())
  425. def test_replace_ea_dtype_with_method(self, any_numeric_ea_dtype):
  426. arr = pd.array([1, 2, pd.NA, 4], dtype=any_numeric_ea_dtype)
  427. ser = pd.Series(arr)
  428. self._check_replace_with_method(ser)
  429. @pytest.mark.parametrize("as_categorical", [True, False])
  430. def test_replace_interval_with_method(self, as_categorical):
  431. # in particular interval that can't hold NA
  432. idx = pd.IntervalIndex.from_breaks(range(4))
  433. ser = pd.Series(idx)
  434. if as_categorical:
  435. ser = ser.astype("category")
  436. self._check_replace_with_method(ser)
  437. @pytest.mark.parametrize("as_period", [True, False])
  438. @pytest.mark.parametrize("as_categorical", [True, False])
  439. def test_replace_datetimelike_with_method(self, as_period, as_categorical):
  440. idx = pd.date_range("2016-01-01", periods=5, tz="US/Pacific")
  441. if as_period:
  442. idx = idx.tz_localize(None).to_period("D")
  443. ser = pd.Series(idx)
  444. ser.iloc[-2] = pd.NaT
  445. if as_categorical:
  446. ser = ser.astype("category")
  447. self._check_replace_with_method(ser)
  448. def test_replace_with_compiled_regex(self):
  449. # https://github.com/pandas-dev/pandas/issues/35680
  450. s = pd.Series(["a", "b", "c"])
  451. regex = re.compile("^a$")
  452. result = s.replace({regex: "z"}, regex=True)
  453. expected = pd.Series(["z", "b", "c"])
  454. tm.assert_series_equal(result, expected)
  455. def test_pandas_replace_na(self):
  456. # GH#43344
  457. ser = pd.Series(["AA", "BB", "CC", "DD", "EE", "", pd.NA], dtype="string")
  458. regex_mapping = {
  459. "AA": "CC",
  460. "BB": "CC",
  461. "EE": "CC",
  462. "CC": "CC-REPL",
  463. }
  464. result = ser.replace(regex_mapping, regex=True)
  465. exp = pd.Series(["CC", "CC", "CC-REPL", "DD", "CC", "", pd.NA], dtype="string")
  466. tm.assert_series_equal(result, exp)
  467. @pytest.mark.parametrize(
  468. "dtype, input_data, to_replace, expected_data",
  469. [
  470. ("bool", [True, False], {True: False}, [False, False]),
  471. ("int64", [1, 2], {1: 10, 2: 20}, [10, 20]),
  472. ("Int64", [1, 2], {1: 10, 2: 20}, [10, 20]),
  473. ("float64", [1.1, 2.2], {1.1: 10.1, 2.2: 20.5}, [10.1, 20.5]),
  474. ("Float64", [1.1, 2.2], {1.1: 10.1, 2.2: 20.5}, [10.1, 20.5]),
  475. ("string", ["one", "two"], {"one": "1", "two": "2"}, ["1", "2"]),
  476. (
  477. pd.IntervalDtype("int64"),
  478. IntervalArray([pd.Interval(1, 2), pd.Interval(2, 3)]),
  479. {pd.Interval(1, 2): pd.Interval(10, 20)},
  480. IntervalArray([pd.Interval(10, 20), pd.Interval(2, 3)]),
  481. ),
  482. (
  483. pd.IntervalDtype("float64"),
  484. IntervalArray([pd.Interval(1.0, 2.7), pd.Interval(2.8, 3.1)]),
  485. {pd.Interval(1.0, 2.7): pd.Interval(10.6, 20.8)},
  486. IntervalArray([pd.Interval(10.6, 20.8), pd.Interval(2.8, 3.1)]),
  487. ),
  488. (
  489. pd.PeriodDtype("M"),
  490. [pd.Period("2020-05", freq="M")],
  491. {pd.Period("2020-05", freq="M"): pd.Period("2020-06", freq="M")},
  492. [pd.Period("2020-06", freq="M")],
  493. ),
  494. ],
  495. )
  496. def test_replace_dtype(self, dtype, input_data, to_replace, expected_data):
  497. # GH#33484
  498. ser = pd.Series(input_data, dtype=dtype)
  499. result = ser.replace(to_replace)
  500. expected = pd.Series(expected_data, dtype=dtype)
  501. tm.assert_series_equal(result, expected)
  502. def test_replace_string_dtype(self):
  503. # GH#40732, GH#44940
  504. ser = pd.Series(["one", "two", np.nan], dtype="string")
  505. res = ser.replace({"one": "1", "two": "2"})
  506. expected = pd.Series(["1", "2", np.nan], dtype="string")
  507. tm.assert_series_equal(res, expected)
  508. # GH#31644
  509. ser2 = pd.Series(["A", np.nan], dtype="string")
  510. res2 = ser2.replace("A", "B")
  511. expected2 = pd.Series(["B", np.nan], dtype="string")
  512. tm.assert_series_equal(res2, expected2)
  513. ser3 = pd.Series(["A", "B"], dtype="string")
  514. res3 = ser3.replace("A", pd.NA)
  515. expected3 = pd.Series([pd.NA, "B"], dtype="string")
  516. tm.assert_series_equal(res3, expected3)
  517. def test_replace_string_dtype_list_to_replace(self):
  518. # GH#41215, GH#44940
  519. ser = pd.Series(["abc", "def"], dtype="string")
  520. res = ser.replace(["abc", "any other string"], "xyz")
  521. expected = pd.Series(["xyz", "def"], dtype="string")
  522. tm.assert_series_equal(res, expected)
  523. def test_replace_string_dtype_regex(self):
  524. # GH#31644
  525. ser = pd.Series(["A", "B"], dtype="string")
  526. res = ser.replace(r".", "C", regex=True)
  527. expected = pd.Series(["C", "C"], dtype="string")
  528. tm.assert_series_equal(res, expected)
  529. def test_replace_nullable_numeric(self):
  530. # GH#40732, GH#44940
  531. floats = pd.Series([1.0, 2.0, 3.999, 4.4], dtype=pd.Float64Dtype())
  532. assert floats.replace({1.0: 9}).dtype == floats.dtype
  533. assert floats.replace(1.0, 9).dtype == floats.dtype
  534. assert floats.replace({1.0: 9.0}).dtype == floats.dtype
  535. assert floats.replace(1.0, 9.0).dtype == floats.dtype
  536. res = floats.replace(to_replace=[1.0, 2.0], value=[9.0, 10.0])
  537. assert res.dtype == floats.dtype
  538. ints = pd.Series([1, 2, 3, 4], dtype=pd.Int64Dtype())
  539. assert ints.replace({1: 9}).dtype == ints.dtype
  540. assert ints.replace(1, 9).dtype == ints.dtype
  541. assert ints.replace({1: 9.0}).dtype == ints.dtype
  542. assert ints.replace(1, 9.0).dtype == ints.dtype
  543. # nullable (for now) raises instead of casting
  544. with pytest.raises(TypeError, match="Invalid value"):
  545. ints.replace({1: 9.5})
  546. with pytest.raises(TypeError, match="Invalid value"):
  547. ints.replace(1, 9.5)
  548. @pytest.mark.parametrize("regex", [False, True])
  549. def test_replace_regex_dtype_series(self, regex):
  550. # GH-48644
  551. series = pd.Series(["0"])
  552. expected = pd.Series([1])
  553. result = series.replace(to_replace="0", value=1, regex=regex)
  554. tm.assert_series_equal(result, expected)
  555. def test_replace_different_int_types(self, any_int_numpy_dtype):
  556. # GH#45311
  557. labs = pd.Series([1, 1, 1, 0, 0, 2, 2, 2], dtype=any_int_numpy_dtype)
  558. maps = pd.Series([0, 2, 1], dtype=any_int_numpy_dtype)
  559. map_dict = dict(zip(maps.values, maps.index))
  560. result = labs.replace(map_dict)
  561. expected = labs.replace({0: 0, 2: 1, 1: 2})
  562. tm.assert_series_equal(result, expected)
  563. @pytest.mark.parametrize("val", [2, np.nan, 2.0])
  564. def test_replace_value_none_dtype_numeric(self, val):
  565. # GH#48231
  566. ser = pd.Series([1, val])
  567. result = ser.replace(val, None)
  568. expected = pd.Series([1, None], dtype=object)
  569. tm.assert_series_equal(result, expected)
  570. def test_replace_change_dtype_series(self):
  571. # GH#25797
  572. df = pd.DataFrame.from_dict({"Test": ["0.5", True, "0.6"]})
  573. df["Test"] = df["Test"].replace([True], [np.nan])
  574. expected = pd.DataFrame.from_dict({"Test": ["0.5", np.nan, "0.6"]})
  575. tm.assert_frame_equal(df, expected)
  576. df = pd.DataFrame.from_dict({"Test": ["0.5", None, "0.6"]})
  577. df["Test"] = df["Test"].replace([None], [np.nan])
  578. tm.assert_frame_equal(df, expected)
  579. df = pd.DataFrame.from_dict({"Test": ["0.5", None, "0.6"]})
  580. df["Test"] = df["Test"].fillna(np.nan)
  581. tm.assert_frame_equal(df, expected)
  582. @pytest.mark.parametrize("dtype", ["object", "Int64"])
  583. def test_replace_na_in_obj_column(self, dtype):
  584. # GH#47480
  585. ser = pd.Series([0, 1, pd.NA], dtype=dtype)
  586. expected = pd.Series([0, 2, pd.NA], dtype=dtype)
  587. result = ser.replace(to_replace=1, value=2)
  588. tm.assert_series_equal(result, expected)
  589. ser.replace(to_replace=1, value=2, inplace=True)
  590. tm.assert_series_equal(ser, expected)
  591. @pytest.mark.parametrize("val", [0, 0.5])
  592. def test_replace_numeric_column_with_na(self, val):
  593. # GH#50758
  594. ser = pd.Series([val, 1])
  595. expected = pd.Series([val, pd.NA])
  596. result = ser.replace(to_replace=1, value=pd.NA)
  597. tm.assert_series_equal(result, expected)
  598. ser.replace(to_replace=1, value=pd.NA, inplace=True)
  599. tm.assert_series_equal(ser, expected)