123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511 |
- from itertools import chain
- import operator
- import numpy as np
- import pytest
- from pandas._libs.algos import (
- Infinity,
- NegInfinity,
- )
- import pandas.util._test_decorators as td
- from pandas import (
- NA,
- NaT,
- Series,
- Timestamp,
- date_range,
- )
- import pandas._testing as tm
- from pandas.api.types import CategoricalDtype
- @pytest.fixture
- def ser():
- return Series([1, 3, 4, 2, np.nan, 2, 1, 5, np.nan, 3])
- @pytest.fixture(
- params=[
- ["average", np.array([1.5, 5.5, 7.0, 3.5, np.nan, 3.5, 1.5, 8.0, np.nan, 5.5])],
- ["min", np.array([1, 5, 7, 3, np.nan, 3, 1, 8, np.nan, 5])],
- ["max", np.array([2, 6, 7, 4, np.nan, 4, 2, 8, np.nan, 6])],
- ["first", np.array([1, 5, 7, 3, np.nan, 4, 2, 8, np.nan, 6])],
- ["dense", np.array([1, 3, 4, 2, np.nan, 2, 1, 5, np.nan, 3])],
- ]
- )
- def results(request):
- return request.param
- @pytest.fixture(
- params=[
- "object",
- "float64",
- "int64",
- "Float64",
- "Int64",
- pytest.param("float64[pyarrow]", marks=td.skip_if_no("pyarrow")),
- pytest.param("int64[pyarrow]", marks=td.skip_if_no("pyarrow")),
- ]
- )
- def dtype(request):
- return request.param
- class TestSeriesRank:
- @td.skip_if_no_scipy
- def test_rank(self, datetime_series):
- from scipy.stats import rankdata
- datetime_series[::2] = np.nan
- datetime_series[:10:3] = 4.0
- ranks = datetime_series.rank()
- oranks = datetime_series.astype("O").rank()
- tm.assert_series_equal(ranks, oranks)
- mask = np.isnan(datetime_series)
- filled = datetime_series.fillna(np.inf)
- # rankdata returns a ndarray
- exp = Series(rankdata(filled), index=filled.index, name="ts")
- exp[mask] = np.nan
- tm.assert_series_equal(ranks, exp)
- iseries = Series(np.arange(5).repeat(2))
- iranks = iseries.rank()
- exp = iseries.astype(float).rank()
- tm.assert_series_equal(iranks, exp)
- iseries = Series(np.arange(5)) + 1.0
- exp = iseries / 5.0
- iranks = iseries.rank(pct=True)
- tm.assert_series_equal(iranks, exp)
- iseries = Series(np.repeat(1, 100))
- exp = Series(np.repeat(0.505, 100))
- iranks = iseries.rank(pct=True)
- tm.assert_series_equal(iranks, exp)
- # Explicit cast to float to avoid implicit cast when setting nan
- iseries = iseries.astype("float")
- iseries[1] = np.nan
- exp = Series(np.repeat(50.0 / 99.0, 100))
- exp[1] = np.nan
- iranks = iseries.rank(pct=True)
- tm.assert_series_equal(iranks, exp)
- iseries = Series(np.arange(5)) + 1.0
- iseries[4] = np.nan
- exp = iseries / 4.0
- iranks = iseries.rank(pct=True)
- tm.assert_series_equal(iranks, exp)
- iseries = Series(np.repeat(np.nan, 100))
- exp = iseries.copy()
- iranks = iseries.rank(pct=True)
- tm.assert_series_equal(iranks, exp)
- # Explicit cast to float to avoid implicit cast when setting nan
- iseries = Series(np.arange(5), dtype="float") + 1
- iseries[4] = np.nan
- exp = iseries / 4.0
- iranks = iseries.rank(pct=True)
- tm.assert_series_equal(iranks, exp)
- rng = date_range("1/1/1990", periods=5)
- # Explicit cast to float to avoid implicit cast when setting nan
- iseries = Series(np.arange(5), rng, dtype="float") + 1
- iseries.iloc[4] = np.nan
- exp = iseries / 4.0
- iranks = iseries.rank(pct=True)
- tm.assert_series_equal(iranks, exp)
- iseries = Series([1e-50, 1e-100, 1e-20, 1e-2, 1e-20 + 1e-30, 1e-1])
- exp = Series([2, 1, 3, 5, 4, 6.0])
- iranks = iseries.rank()
- tm.assert_series_equal(iranks, exp)
- # GH 5968
- iseries = Series(["3 day", "1 day 10m", "-2 day", NaT], dtype="m8[ns]")
- exp = Series([3, 2, 1, np.nan])
- iranks = iseries.rank()
- tm.assert_series_equal(iranks, exp)
- values = np.array(
- [-50, -1, -1e-20, -1e-25, -1e-50, 0, 1e-40, 1e-20, 1e-10, 2, 40],
- dtype="float64",
- )
- random_order = np.random.permutation(len(values))
- iseries = Series(values[random_order])
- exp = Series(random_order + 1.0, dtype="float64")
- iranks = iseries.rank()
- tm.assert_series_equal(iranks, exp)
- def test_rank_categorical(self):
- # GH issue #15420 rank incorrectly orders ordered categories
- # Test ascending/descending ranking for ordered categoricals
- exp = Series([1.0, 2.0, 3.0, 4.0, 5.0, 6.0])
- exp_desc = Series([6.0, 5.0, 4.0, 3.0, 2.0, 1.0])
- ordered = Series(
- ["first", "second", "third", "fourth", "fifth", "sixth"]
- ).astype(
- CategoricalDtype(
- categories=["first", "second", "third", "fourth", "fifth", "sixth"],
- ordered=True,
- )
- )
- tm.assert_series_equal(ordered.rank(), exp)
- tm.assert_series_equal(ordered.rank(ascending=False), exp_desc)
- # Unordered categoricals should be ranked as objects
- unordered = Series(
- ["first", "second", "third", "fourth", "fifth", "sixth"]
- ).astype(
- CategoricalDtype(
- categories=["first", "second", "third", "fourth", "fifth", "sixth"],
- ordered=False,
- )
- )
- exp_unordered = Series([2.0, 4.0, 6.0, 3.0, 1.0, 5.0])
- res = unordered.rank()
- tm.assert_series_equal(res, exp_unordered)
- unordered1 = Series([1, 2, 3, 4, 5, 6]).astype(
- CategoricalDtype([1, 2, 3, 4, 5, 6], False)
- )
- exp_unordered1 = Series([1.0, 2.0, 3.0, 4.0, 5.0, 6.0])
- res1 = unordered1.rank()
- tm.assert_series_equal(res1, exp_unordered1)
- # Test na_option for rank data
- na_ser = Series(
- ["first", "second", "third", "fourth", "fifth", "sixth", np.NaN]
- ).astype(
- CategoricalDtype(
- ["first", "second", "third", "fourth", "fifth", "sixth", "seventh"],
- True,
- )
- )
- exp_top = Series([2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 1.0])
- exp_bot = Series([1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0])
- exp_keep = Series([1.0, 2.0, 3.0, 4.0, 5.0, 6.0, np.NaN])
- tm.assert_series_equal(na_ser.rank(na_option="top"), exp_top)
- tm.assert_series_equal(na_ser.rank(na_option="bottom"), exp_bot)
- tm.assert_series_equal(na_ser.rank(na_option="keep"), exp_keep)
- # Test na_option for rank data with ascending False
- exp_top = Series([7.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0])
- exp_bot = Series([6.0, 5.0, 4.0, 3.0, 2.0, 1.0, 7.0])
- exp_keep = Series([6.0, 5.0, 4.0, 3.0, 2.0, 1.0, np.NaN])
- tm.assert_series_equal(na_ser.rank(na_option="top", ascending=False), exp_top)
- tm.assert_series_equal(
- na_ser.rank(na_option="bottom", ascending=False), exp_bot
- )
- tm.assert_series_equal(na_ser.rank(na_option="keep", ascending=False), exp_keep)
- # Test invalid values for na_option
- msg = "na_option must be one of 'keep', 'top', or 'bottom'"
- with pytest.raises(ValueError, match=msg):
- na_ser.rank(na_option="bad", ascending=False)
- # invalid type
- with pytest.raises(ValueError, match=msg):
- na_ser.rank(na_option=True, ascending=False)
- # Test with pct=True
- na_ser = Series(["first", "second", "third", "fourth", np.NaN]).astype(
- CategoricalDtype(["first", "second", "third", "fourth"], True)
- )
- exp_top = Series([0.4, 0.6, 0.8, 1.0, 0.2])
- exp_bot = Series([0.2, 0.4, 0.6, 0.8, 1.0])
- exp_keep = Series([0.25, 0.5, 0.75, 1.0, np.NaN])
- tm.assert_series_equal(na_ser.rank(na_option="top", pct=True), exp_top)
- tm.assert_series_equal(na_ser.rank(na_option="bottom", pct=True), exp_bot)
- tm.assert_series_equal(na_ser.rank(na_option="keep", pct=True), exp_keep)
- def test_rank_signature(self):
- s = Series([0, 1])
- s.rank(method="average")
- msg = "No axis named average for object type Series"
- with pytest.raises(ValueError, match=msg):
- s.rank("average")
- @pytest.mark.parametrize("dtype", [None, object])
- def test_rank_tie_methods(self, ser, results, dtype):
- method, exp = results
- ser = ser if dtype is None else ser.astype(dtype)
- result = ser.rank(method=method)
- tm.assert_series_equal(result, Series(exp))
- @td.skip_if_no_scipy
- @pytest.mark.parametrize("ascending", [True, False])
- @pytest.mark.parametrize("method", ["average", "min", "max", "first", "dense"])
- @pytest.mark.parametrize("na_option", ["top", "bottom", "keep"])
- @pytest.mark.parametrize(
- "dtype, na_value, pos_inf, neg_inf",
- [
- ("object", None, Infinity(), NegInfinity()),
- ("float64", np.nan, np.inf, -np.inf),
- ("Float64", NA, np.inf, -np.inf),
- pytest.param(
- "float64[pyarrow]",
- NA,
- np.inf,
- -np.inf,
- marks=td.skip_if_no("pyarrow"),
- ),
- ],
- )
- def test_rank_tie_methods_on_infs_nans(
- self, method, na_option, ascending, dtype, na_value, pos_inf, neg_inf
- ):
- if dtype == "float64[pyarrow]":
- if method == "average":
- exp_dtype = "float64[pyarrow]"
- else:
- exp_dtype = "uint64[pyarrow]"
- else:
- exp_dtype = "float64"
- chunk = 3
- in_arr = [neg_inf] * chunk + [na_value] * chunk + [pos_inf] * chunk
- iseries = Series(in_arr, dtype=dtype)
- exp_ranks = {
- "average": ([2, 2, 2], [5, 5, 5], [8, 8, 8]),
- "min": ([1, 1, 1], [4, 4, 4], [7, 7, 7]),
- "max": ([3, 3, 3], [6, 6, 6], [9, 9, 9]),
- "first": ([1, 2, 3], [4, 5, 6], [7, 8, 9]),
- "dense": ([1, 1, 1], [2, 2, 2], [3, 3, 3]),
- }
- ranks = exp_ranks[method]
- if na_option == "top":
- order = [ranks[1], ranks[0], ranks[2]]
- elif na_option == "bottom":
- order = [ranks[0], ranks[2], ranks[1]]
- else:
- order = [ranks[0], [np.nan] * chunk, ranks[1]]
- expected = order if ascending else order[::-1]
- expected = list(chain.from_iterable(expected))
- result = iseries.rank(method=method, na_option=na_option, ascending=ascending)
- tm.assert_series_equal(result, Series(expected, dtype=exp_dtype))
- def test_rank_desc_mix_nans_infs(self):
- # GH 19538
- # check descending ranking when mix nans and infs
- iseries = Series([1, np.nan, np.inf, -np.inf, 25])
- result = iseries.rank(ascending=False)
- exp = Series([3, np.nan, 1, 4, 2], dtype="float64")
- tm.assert_series_equal(result, exp)
- @td.skip_if_no_scipy
- @pytest.mark.parametrize("method", ["average", "min", "max", "first", "dense"])
- @pytest.mark.parametrize(
- "op, value",
- [
- [operator.add, 0],
- [operator.add, 1e6],
- [operator.mul, 1e-6],
- ],
- )
- def test_rank_methods_series(self, method, op, value):
- from scipy.stats import rankdata
- xs = np.random.randn(9)
- xs = np.concatenate([xs[i:] for i in range(0, 9, 2)]) # add duplicates
- np.random.shuffle(xs)
- index = [chr(ord("a") + i) for i in range(len(xs))]
- vals = op(xs, value)
- ts = Series(vals, index=index)
- result = ts.rank(method=method)
- sprank = rankdata(vals, method if method != "first" else "ordinal")
- expected = Series(sprank, index=index).astype("float64")
- tm.assert_series_equal(result, expected)
- @pytest.mark.parametrize(
- "ser, exp",
- [
- ([1], [1]),
- ([2], [1]),
- ([0], [1]),
- ([2, 2], [1, 1]),
- ([1, 2, 3], [1, 2, 3]),
- ([4, 2, 1], [3, 2, 1]),
- ([1, 1, 5, 5, 3], [1, 1, 3, 3, 2]),
- ([-5, -4, -3, -2, -1], [1, 2, 3, 4, 5]),
- ],
- )
- def test_rank_dense_method(self, dtype, ser, exp):
- s = Series(ser).astype(dtype)
- result = s.rank(method="dense")
- expected = Series(exp).astype(result.dtype)
- tm.assert_series_equal(result, expected)
- def test_rank_descending(self, ser, results, dtype):
- method, _ = results
- if "i" in dtype:
- s = ser.dropna()
- else:
- s = ser.astype(dtype)
- res = s.rank(ascending=False)
- expected = (s.max() - s).rank()
- tm.assert_series_equal(res, expected)
- expected = (s.max() - s).rank(method=method)
- res2 = s.rank(method=method, ascending=False)
- tm.assert_series_equal(res2, expected)
- def test_rank_int(self, ser, results):
- method, exp = results
- s = ser.dropna().astype("i8")
- result = s.rank(method=method)
- expected = Series(exp).dropna()
- expected.index = result.index
- tm.assert_series_equal(result, expected)
- def test_rank_object_bug(self):
- # GH 13445
- # smoke tests
- Series([np.nan] * 32).astype(object).rank(ascending=True)
- Series([np.nan] * 32).astype(object).rank(ascending=False)
- def test_rank_modify_inplace(self):
- # GH 18521
- # Check rank does not mutate series
- s = Series([Timestamp("2017-01-05 10:20:27.569000"), NaT])
- expected = s.copy()
- s.rank()
- result = s
- tm.assert_series_equal(result, expected)
- # GH15630, pct should be on 100% basis when method='dense'
- @pytest.mark.parametrize(
- "ser, exp",
- [
- ([1], [1.0]),
- ([1, 2], [1.0 / 2, 2.0 / 2]),
- ([2, 2], [1.0, 1.0]),
- ([1, 2, 3], [1.0 / 3, 2.0 / 3, 3.0 / 3]),
- ([1, 2, 2], [1.0 / 2, 2.0 / 2, 2.0 / 2]),
- ([4, 2, 1], [3.0 / 3, 2.0 / 3, 1.0 / 3]),
- ([1, 1, 5, 5, 3], [1.0 / 3, 1.0 / 3, 3.0 / 3, 3.0 / 3, 2.0 / 3]),
- ([1, 1, 3, 3, 5, 5], [1.0 / 3, 1.0 / 3, 2.0 / 3, 2.0 / 3, 3.0 / 3, 3.0 / 3]),
- ([-5, -4, -3, -2, -1], [1.0 / 5, 2.0 / 5, 3.0 / 5, 4.0 / 5, 5.0 / 5]),
- ],
- )
- def test_rank_dense_pct(dtype, ser, exp):
- s = Series(ser).astype(dtype)
- result = s.rank(method="dense", pct=True)
- expected = Series(exp).astype(result.dtype)
- tm.assert_series_equal(result, expected)
- @pytest.mark.parametrize(
- "ser, exp",
- [
- ([1], [1.0]),
- ([1, 2], [1.0 / 2, 2.0 / 2]),
- ([2, 2], [1.0 / 2, 1.0 / 2]),
- ([1, 2, 3], [1.0 / 3, 2.0 / 3, 3.0 / 3]),
- ([1, 2, 2], [1.0 / 3, 2.0 / 3, 2.0 / 3]),
- ([4, 2, 1], [3.0 / 3, 2.0 / 3, 1.0 / 3]),
- ([1, 1, 5, 5, 3], [1.0 / 5, 1.0 / 5, 4.0 / 5, 4.0 / 5, 3.0 / 5]),
- ([1, 1, 3, 3, 5, 5], [1.0 / 6, 1.0 / 6, 3.0 / 6, 3.0 / 6, 5.0 / 6, 5.0 / 6]),
- ([-5, -4, -3, -2, -1], [1.0 / 5, 2.0 / 5, 3.0 / 5, 4.0 / 5, 5.0 / 5]),
- ],
- )
- def test_rank_min_pct(dtype, ser, exp):
- s = Series(ser).astype(dtype)
- result = s.rank(method="min", pct=True)
- expected = Series(exp).astype(result.dtype)
- tm.assert_series_equal(result, expected)
- @pytest.mark.parametrize(
- "ser, exp",
- [
- ([1], [1.0]),
- ([1, 2], [1.0 / 2, 2.0 / 2]),
- ([2, 2], [1.0, 1.0]),
- ([1, 2, 3], [1.0 / 3, 2.0 / 3, 3.0 / 3]),
- ([1, 2, 2], [1.0 / 3, 3.0 / 3, 3.0 / 3]),
- ([4, 2, 1], [3.0 / 3, 2.0 / 3, 1.0 / 3]),
- ([1, 1, 5, 5, 3], [2.0 / 5, 2.0 / 5, 5.0 / 5, 5.0 / 5, 3.0 / 5]),
- ([1, 1, 3, 3, 5, 5], [2.0 / 6, 2.0 / 6, 4.0 / 6, 4.0 / 6, 6.0 / 6, 6.0 / 6]),
- ([-5, -4, -3, -2, -1], [1.0 / 5, 2.0 / 5, 3.0 / 5, 4.0 / 5, 5.0 / 5]),
- ],
- )
- def test_rank_max_pct(dtype, ser, exp):
- s = Series(ser).astype(dtype)
- result = s.rank(method="max", pct=True)
- expected = Series(exp).astype(result.dtype)
- tm.assert_series_equal(result, expected)
- @pytest.mark.parametrize(
- "ser, exp",
- [
- ([1], [1.0]),
- ([1, 2], [1.0 / 2, 2.0 / 2]),
- ([2, 2], [1.5 / 2, 1.5 / 2]),
- ([1, 2, 3], [1.0 / 3, 2.0 / 3, 3.0 / 3]),
- ([1, 2, 2], [1.0 / 3, 2.5 / 3, 2.5 / 3]),
- ([4, 2, 1], [3.0 / 3, 2.0 / 3, 1.0 / 3]),
- ([1, 1, 5, 5, 3], [1.5 / 5, 1.5 / 5, 4.5 / 5, 4.5 / 5, 3.0 / 5]),
- ([1, 1, 3, 3, 5, 5], [1.5 / 6, 1.5 / 6, 3.5 / 6, 3.5 / 6, 5.5 / 6, 5.5 / 6]),
- ([-5, -4, -3, -2, -1], [1.0 / 5, 2.0 / 5, 3.0 / 5, 4.0 / 5, 5.0 / 5]),
- ],
- )
- def test_rank_average_pct(dtype, ser, exp):
- s = Series(ser).astype(dtype)
- result = s.rank(method="average", pct=True)
- expected = Series(exp).astype(result.dtype)
- tm.assert_series_equal(result, expected)
- @pytest.mark.parametrize(
- "ser, exp",
- [
- ([1], [1.0]),
- ([1, 2], [1.0 / 2, 2.0 / 2]),
- ([2, 2], [1.0 / 2, 2.0 / 2.0]),
- ([1, 2, 3], [1.0 / 3, 2.0 / 3, 3.0 / 3]),
- ([1, 2, 2], [1.0 / 3, 2.0 / 3, 3.0 / 3]),
- ([4, 2, 1], [3.0 / 3, 2.0 / 3, 1.0 / 3]),
- ([1, 1, 5, 5, 3], [1.0 / 5, 2.0 / 5, 4.0 / 5, 5.0 / 5, 3.0 / 5]),
- ([1, 1, 3, 3, 5, 5], [1.0 / 6, 2.0 / 6, 3.0 / 6, 4.0 / 6, 5.0 / 6, 6.0 / 6]),
- ([-5, -4, -3, -2, -1], [1.0 / 5, 2.0 / 5, 3.0 / 5, 4.0 / 5, 5.0 / 5]),
- ],
- )
- def test_rank_first_pct(dtype, ser, exp):
- s = Series(ser).astype(dtype)
- result = s.rank(method="first", pct=True)
- expected = Series(exp).astype(result.dtype)
- tm.assert_series_equal(result, expected)
- @pytest.mark.single_cpu
- def test_pct_max_many_rows():
- # GH 18271
- s = Series(np.arange(2**24 + 1))
- result = s.rank(pct=True).max()
- assert result == 1
|