test_quantile.py 7.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238
  1. import numpy as np
  2. import pytest
  3. from pandas.core.dtypes.common import is_integer
  4. import pandas as pd
  5. from pandas import (
  6. Index,
  7. Series,
  8. )
  9. import pandas._testing as tm
  10. from pandas.core.indexes.datetimes import Timestamp
  11. class TestSeriesQuantile:
  12. def test_quantile(self, datetime_series):
  13. q = datetime_series.quantile(0.1)
  14. assert q == np.percentile(datetime_series.dropna(), 10)
  15. q = datetime_series.quantile(0.9)
  16. assert q == np.percentile(datetime_series.dropna(), 90)
  17. # object dtype
  18. q = Series(datetime_series, dtype=object).quantile(0.9)
  19. assert q == np.percentile(datetime_series.dropna(), 90)
  20. # datetime64[ns] dtype
  21. dts = datetime_series.index.to_series()
  22. q = dts.quantile(0.2)
  23. assert q == Timestamp("2000-01-10 19:12:00")
  24. # timedelta64[ns] dtype
  25. tds = dts.diff()
  26. q = tds.quantile(0.25)
  27. assert q == pd.to_timedelta("24:00:00")
  28. # GH7661
  29. result = Series([np.timedelta64("NaT")]).sum()
  30. assert result == pd.Timedelta(0)
  31. msg = "percentiles should all be in the interval \\[0, 1\\]"
  32. for invalid in [-1, 2, [0.5, -1], [0.5, 2]]:
  33. with pytest.raises(ValueError, match=msg):
  34. datetime_series.quantile(invalid)
  35. def test_quantile_multi(self, datetime_series):
  36. qs = [0.1, 0.9]
  37. result = datetime_series.quantile(qs)
  38. expected = Series(
  39. [
  40. np.percentile(datetime_series.dropna(), 10),
  41. np.percentile(datetime_series.dropna(), 90),
  42. ],
  43. index=qs,
  44. name=datetime_series.name,
  45. )
  46. tm.assert_series_equal(result, expected)
  47. dts = datetime_series.index.to_series()
  48. dts.name = "xxx"
  49. result = dts.quantile((0.2, 0.2))
  50. expected = Series(
  51. [Timestamp("2000-01-10 19:12:00"), Timestamp("2000-01-10 19:12:00")],
  52. index=[0.2, 0.2],
  53. name="xxx",
  54. )
  55. tm.assert_series_equal(result, expected)
  56. result = datetime_series.quantile([])
  57. expected = Series(
  58. [], name=datetime_series.name, index=Index([], dtype=float), dtype="float64"
  59. )
  60. tm.assert_series_equal(result, expected)
  61. def test_quantile_interpolation(self, datetime_series):
  62. # see gh-10174
  63. # interpolation = linear (default case)
  64. q = datetime_series.quantile(0.1, interpolation="linear")
  65. assert q == np.percentile(datetime_series.dropna(), 10)
  66. q1 = datetime_series.quantile(0.1)
  67. assert q1 == np.percentile(datetime_series.dropna(), 10)
  68. # test with and without interpolation keyword
  69. assert q == q1
  70. def test_quantile_interpolation_dtype(self):
  71. # GH #10174
  72. # interpolation = linear (default case)
  73. q = Series([1, 3, 4]).quantile(0.5, interpolation="lower")
  74. assert q == np.percentile(np.array([1, 3, 4]), 50)
  75. assert is_integer(q)
  76. q = Series([1, 3, 4]).quantile(0.5, interpolation="higher")
  77. assert q == np.percentile(np.array([1, 3, 4]), 50)
  78. assert is_integer(q)
  79. def test_quantile_nan(self):
  80. # GH 13098
  81. s = Series([1, 2, 3, 4, np.nan])
  82. result = s.quantile(0.5)
  83. expected = 2.5
  84. assert result == expected
  85. # all nan/empty
  86. s1 = Series([], dtype=object)
  87. cases = [s1, Series([np.nan, np.nan])]
  88. for s in cases:
  89. res = s.quantile(0.5)
  90. assert np.isnan(res)
  91. res = s.quantile([0.5])
  92. tm.assert_series_equal(res, Series([np.nan], index=[0.5]))
  93. res = s.quantile([0.2, 0.3])
  94. tm.assert_series_equal(res, Series([np.nan, np.nan], index=[0.2, 0.3]))
  95. @pytest.mark.parametrize(
  96. "case",
  97. [
  98. [
  99. Timestamp("2011-01-01"),
  100. Timestamp("2011-01-02"),
  101. Timestamp("2011-01-03"),
  102. ],
  103. [
  104. Timestamp("2011-01-01", tz="US/Eastern"),
  105. Timestamp("2011-01-02", tz="US/Eastern"),
  106. Timestamp("2011-01-03", tz="US/Eastern"),
  107. ],
  108. [pd.Timedelta("1 days"), pd.Timedelta("2 days"), pd.Timedelta("3 days")],
  109. # NaT
  110. [
  111. Timestamp("2011-01-01"),
  112. Timestamp("2011-01-02"),
  113. Timestamp("2011-01-03"),
  114. pd.NaT,
  115. ],
  116. [
  117. Timestamp("2011-01-01", tz="US/Eastern"),
  118. Timestamp("2011-01-02", tz="US/Eastern"),
  119. Timestamp("2011-01-03", tz="US/Eastern"),
  120. pd.NaT,
  121. ],
  122. [
  123. pd.Timedelta("1 days"),
  124. pd.Timedelta("2 days"),
  125. pd.Timedelta("3 days"),
  126. pd.NaT,
  127. ],
  128. ],
  129. )
  130. def test_quantile_box(self, case):
  131. s = Series(case, name="XXX")
  132. res = s.quantile(0.5)
  133. assert res == case[1]
  134. res = s.quantile([0.5])
  135. exp = Series([case[1]], index=[0.5], name="XXX")
  136. tm.assert_series_equal(res, exp)
  137. def test_datetime_timedelta_quantiles(self):
  138. # covers #9694
  139. assert pd.isna(Series([], dtype="M8[ns]").quantile(0.5))
  140. assert pd.isna(Series([], dtype="m8[ns]").quantile(0.5))
  141. def test_quantile_nat(self):
  142. res = Series([pd.NaT, pd.NaT]).quantile(0.5)
  143. assert res is pd.NaT
  144. res = Series([pd.NaT, pd.NaT]).quantile([0.5])
  145. tm.assert_series_equal(res, Series([pd.NaT], index=[0.5]))
  146. @pytest.mark.parametrize(
  147. "values, dtype",
  148. [([0, 0, 0, 1, 2, 3], "Sparse[int]"), ([0.0, None, 1.0, 2.0], "Sparse[float]")],
  149. )
  150. def test_quantile_sparse(self, values, dtype):
  151. ser = Series(values, dtype=dtype)
  152. result = ser.quantile([0.5])
  153. expected = Series(np.asarray(ser)).quantile([0.5]).astype("Sparse[float]")
  154. tm.assert_series_equal(result, expected)
  155. def test_quantile_empty(self):
  156. # floats
  157. s = Series([], dtype="float64")
  158. res = s.quantile(0.5)
  159. assert np.isnan(res)
  160. res = s.quantile([0.5])
  161. exp = Series([np.nan], index=[0.5])
  162. tm.assert_series_equal(res, exp)
  163. # int
  164. s = Series([], dtype="int64")
  165. res = s.quantile(0.5)
  166. assert np.isnan(res)
  167. res = s.quantile([0.5])
  168. exp = Series([np.nan], index=[0.5])
  169. tm.assert_series_equal(res, exp)
  170. # datetime
  171. s = Series([], dtype="datetime64[ns]")
  172. res = s.quantile(0.5)
  173. assert res is pd.NaT
  174. res = s.quantile([0.5])
  175. exp = Series([pd.NaT], index=[0.5])
  176. tm.assert_series_equal(res, exp)
  177. @pytest.mark.parametrize("dtype", [int, float, "Int64"])
  178. def test_quantile_dtypes(self, dtype):
  179. result = Series([1, 2, 3], dtype=dtype).quantile(np.arange(0, 1, 0.25))
  180. expected = Series(np.arange(1, 3, 0.5), index=np.arange(0, 1, 0.25))
  181. if dtype == "Int64":
  182. expected = expected.astype("Float64")
  183. tm.assert_series_equal(result, expected)
  184. def test_quantile_all_na(self, any_int_ea_dtype):
  185. # GH#50681
  186. ser = Series([pd.NA, pd.NA], dtype=any_int_ea_dtype)
  187. with tm.assert_produces_warning(None):
  188. result = ser.quantile([0.1, 0.5])
  189. expected = Series([pd.NA, pd.NA], dtype=any_int_ea_dtype, index=[0.1, 0.5])
  190. tm.assert_series_equal(result, expected)
  191. def test_quantile_dtype_size(self, any_int_ea_dtype):
  192. # GH#50681
  193. ser = Series([pd.NA, pd.NA, 1], dtype=any_int_ea_dtype)
  194. result = ser.quantile([0.1, 0.5])
  195. expected = Series([1, 1], dtype=any_int_ea_dtype, index=[0.1, 0.5])
  196. tm.assert_series_equal(result, expected)