123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248 |
- import numpy as np
- import pytest
- import pandas as pd
- from pandas import (
- Series,
- date_range,
- )
- import pandas._testing as tm
- from pandas.core.arrays import PeriodArray
- class TestSeriesIsIn:
- def test_isin(self):
- s = Series(["A", "B", "C", "a", "B", "B", "A", "C"])
- result = s.isin(["A", "C"])
- expected = Series([True, False, True, False, False, False, True, True])
- tm.assert_series_equal(result, expected)
- # GH#16012
- # This specific issue has to have a series over 1e6 in len, but the
- # comparison array (in_list) must be large enough so that numpy doesn't
- # do a manual masking trick that will avoid this issue altogether
- s = Series(list("abcdefghijk" * 10**5))
- # If numpy doesn't do the manual comparison/mask, these
- # unorderable mixed types are what cause the exception in numpy
- in_list = [-1, "a", "b", "G", "Y", "Z", "E", "K", "E", "S", "I", "R", "R"] * 6
- assert s.isin(in_list).sum() == 200000
- def test_isin_with_string_scalar(self):
- # GH#4763
- s = Series(["A", "B", "C", "a", "B", "B", "A", "C"])
- msg = (
- r"only list-like objects are allowed to be passed to isin\(\), "
- r"you passed a \[str\]"
- )
- with pytest.raises(TypeError, match=msg):
- s.isin("a")
- s = Series(["aaa", "b", "c"])
- with pytest.raises(TypeError, match=msg):
- s.isin("aaa")
- def test_isin_datetimelike_mismatched_reso(self):
- expected = Series([True, True, False, False, False])
- ser = Series(date_range("jan-01-2013", "jan-05-2013"))
- # fails on dtype conversion in the first place
- day_values = np.asarray(ser[0:2].values).astype("datetime64[D]")
- result = ser.isin(day_values)
- tm.assert_series_equal(result, expected)
- dta = ser[:2]._values.astype("M8[s]")
- result = ser.isin(dta)
- tm.assert_series_equal(result, expected)
- def test_isin_datetimelike_mismatched_reso_list(self):
- expected = Series([True, True, False, False, False])
- ser = Series(date_range("jan-01-2013", "jan-05-2013"))
- dta = ser[:2]._values.astype("M8[s]")
- result = ser.isin(list(dta))
- tm.assert_series_equal(result, expected)
- def test_isin_with_i8(self):
- # GH#5021
- expected = Series([True, True, False, False, False])
- expected2 = Series([False, True, False, False, False])
- # datetime64[ns]
- s = Series(date_range("jan-01-2013", "jan-05-2013"))
- result = s.isin(s[0:2])
- tm.assert_series_equal(result, expected)
- result = s.isin(s[0:2].values)
- tm.assert_series_equal(result, expected)
- result = s.isin([s[1]])
- tm.assert_series_equal(result, expected2)
- result = s.isin([np.datetime64(s[1])])
- tm.assert_series_equal(result, expected2)
- result = s.isin(set(s[0:2]))
- tm.assert_series_equal(result, expected)
- # timedelta64[ns]
- s = Series(pd.to_timedelta(range(5), unit="d"))
- result = s.isin(s[0:2])
- tm.assert_series_equal(result, expected)
- @pytest.mark.parametrize("empty", [[], Series(dtype=object), np.array([])])
- def test_isin_empty(self, empty):
- # see GH#16991
- s = Series(["a", "b"])
- expected = Series([False, False])
- result = s.isin(empty)
- tm.assert_series_equal(expected, result)
- def test_isin_read_only(self):
- # https://github.com/pandas-dev/pandas/issues/37174
- arr = np.array([1, 2, 3])
- arr.setflags(write=False)
- s = Series([1, 2, 3])
- result = s.isin(arr)
- expected = Series([True, True, True])
- tm.assert_series_equal(result, expected)
- @pytest.mark.parametrize("dtype", [object, None])
- def test_isin_dt64_values_vs_ints(self, dtype):
- # GH#36621 dont cast integers to datetimes for isin
- dti = date_range("2013-01-01", "2013-01-05")
- ser = Series(dti)
- comps = np.asarray([1356998400000000000], dtype=dtype)
- res = dti.isin(comps)
- expected = np.array([False] * len(dti), dtype=bool)
- tm.assert_numpy_array_equal(res, expected)
- res = ser.isin(comps)
- tm.assert_series_equal(res, Series(expected))
- res = pd.core.algorithms.isin(ser, comps)
- tm.assert_numpy_array_equal(res, expected)
- def test_isin_tzawareness_mismatch(self):
- dti = date_range("2013-01-01", "2013-01-05")
- ser = Series(dti)
- other = dti.tz_localize("UTC")
- res = dti.isin(other)
- expected = np.array([False] * len(dti), dtype=bool)
- tm.assert_numpy_array_equal(res, expected)
- res = ser.isin(other)
- tm.assert_series_equal(res, Series(expected))
- res = pd.core.algorithms.isin(ser, other)
- tm.assert_numpy_array_equal(res, expected)
- def test_isin_period_freq_mismatch(self):
- dti = date_range("2013-01-01", "2013-01-05")
- pi = dti.to_period("M")
- ser = Series(pi)
- # We construct another PeriodIndex with the same i8 values
- # but different dtype
- dtype = dti.to_period("Y").dtype
- other = PeriodArray._simple_new(pi.asi8, dtype=dtype)
- res = pi.isin(other)
- expected = np.array([False] * len(pi), dtype=bool)
- tm.assert_numpy_array_equal(res, expected)
- res = ser.isin(other)
- tm.assert_series_equal(res, Series(expected))
- res = pd.core.algorithms.isin(ser, other)
- tm.assert_numpy_array_equal(res, expected)
- @pytest.mark.parametrize("values", [[-9.0, 0.0], [-9, 0]])
- def test_isin_float_in_int_series(self, values):
- # GH#19356 GH#21804
- ser = Series(values)
- result = ser.isin([-9, -0.5])
- expected = Series([True, False])
- tm.assert_series_equal(result, expected)
- @pytest.mark.parametrize("dtype", ["boolean", "Int64", "Float64"])
- @pytest.mark.parametrize(
- "data,values,expected",
- [
- ([0, 1, 0], [1], [False, True, False]),
- ([0, 1, 0], [1, pd.NA], [False, True, False]),
- ([0, pd.NA, 0], [1, 0], [True, False, True]),
- ([0, 1, pd.NA], [1, pd.NA], [False, True, True]),
- ([0, 1, pd.NA], [1, np.nan], [False, True, False]),
- ([0, pd.NA, pd.NA], [np.nan, pd.NaT, None], [False, False, False]),
- ],
- )
- def test_isin_masked_types(self, dtype, data, values, expected):
- # GH#42405
- ser = Series(data, dtype=dtype)
- result = ser.isin(values)
- expected = Series(expected, dtype="boolean")
- tm.assert_series_equal(result, expected)
- @pytest.mark.slow
- def test_isin_large_series_mixed_dtypes_and_nan():
- # https://github.com/pandas-dev/pandas/issues/37094
- # combination of object dtype for the values and > 1_000_000 elements
- ser = Series([1, 2, np.nan] * 1_000_000)
- result = ser.isin({"foo", "bar"})
- expected = Series([False] * 3 * 1_000_000)
- tm.assert_series_equal(result, expected)
- @pytest.mark.parametrize(
- "array,expected",
- [
- (
- [0, 1j, 1j, 1, 1 + 1j, 1 + 2j, 1 + 1j],
- Series([False, True, True, False, True, True, True], dtype=bool),
- )
- ],
- )
- def test_isin_complex_numbers(array, expected):
- # GH 17927
- result = Series(array).isin([1j, 1 + 1j, 1 + 2j])
- tm.assert_series_equal(result, expected)
- @pytest.mark.parametrize(
- "data,is_in",
- [([1, [2]], [1]), (["simple str", [{"values": 3}]], ["simple str"])],
- )
- def test_isin_filtering_with_mixed_object_types(data, is_in):
- # GH 20883
- ser = Series(data)
- result = ser.isin(is_in)
- expected = Series([True, False])
- tm.assert_series_equal(result, expected)
- @pytest.mark.parametrize("data", [[1, 2, 3], [1.0, 2.0, 3.0]])
- @pytest.mark.parametrize("isin", [[1, 2], [1.0, 2.0]])
- def test_isin_filtering_on_iterable(data, isin):
- # GH 50234
- ser = Series(data)
- result = ser.isin(i for i in isin)
- expected_result = Series([True, True, False])
- tm.assert_series_equal(result, expected_result)
|