123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466 |
- import numpy as np
- import pytest
- from pandas.core.dtypes.common import is_integer
- import pandas as pd
- from pandas import (
- Series,
- Timestamp,
- date_range,
- isna,
- )
- import pandas._testing as tm
- def test_where_unsafe_int(any_signed_int_numpy_dtype):
- s = Series(np.arange(10), dtype=any_signed_int_numpy_dtype)
- mask = s < 5
- s[mask] = range(2, 7)
- expected = Series(
- list(range(2, 7)) + list(range(5, 10)),
- dtype=any_signed_int_numpy_dtype,
- )
- tm.assert_series_equal(s, expected)
- def test_where_unsafe_float(float_numpy_dtype):
- s = Series(np.arange(10), dtype=float_numpy_dtype)
- mask = s < 5
- s[mask] = range(2, 7)
- data = list(range(2, 7)) + list(range(5, 10))
- expected = Series(data, dtype=float_numpy_dtype)
- tm.assert_series_equal(s, expected)
- @pytest.mark.parametrize(
- "dtype,expected_dtype",
- [
- (np.int8, np.float64),
- (np.int16, np.float64),
- (np.int32, np.float64),
- (np.int64, np.float64),
- (np.float32, np.float32),
- (np.float64, np.float64),
- ],
- )
- def test_where_unsafe_upcast(dtype, expected_dtype):
- # see gh-9743
- s = Series(np.arange(10), dtype=dtype)
- values = [2.5, 3.5, 4.5, 5.5, 6.5]
- mask = s < 5
- expected = Series(values + list(range(5, 10)), dtype=expected_dtype)
- s[mask] = values
- tm.assert_series_equal(s, expected)
- def test_where_unsafe():
- # see gh-9731
- s = Series(np.arange(10), dtype="int64")
- values = [2.5, 3.5, 4.5, 5.5]
- mask = s > 5
- expected = Series(list(range(6)) + values, dtype="float64")
- s[mask] = values
- tm.assert_series_equal(s, expected)
- # see gh-3235
- s = Series(np.arange(10), dtype="int64")
- mask = s < 5
- s[mask] = range(2, 7)
- expected = Series(list(range(2, 7)) + list(range(5, 10)), dtype="int64")
- tm.assert_series_equal(s, expected)
- assert s.dtype == expected.dtype
- s = Series(np.arange(10), dtype="int64")
- mask = s > 5
- s[mask] = [0] * 4
- expected = Series([0, 1, 2, 3, 4, 5] + [0] * 4, dtype="int64")
- tm.assert_series_equal(s, expected)
- s = Series(np.arange(10))
- mask = s > 5
- msg = "cannot set using a list-like indexer with a different length than the value"
- with pytest.raises(ValueError, match=msg):
- s[mask] = [5, 4, 3, 2, 1]
- with pytest.raises(ValueError, match=msg):
- s[mask] = [0] * 5
- # dtype changes
- s = Series([1, 2, 3, 4])
- result = s.where(s > 2, np.nan)
- expected = Series([np.nan, np.nan, 3, 4])
- tm.assert_series_equal(result, expected)
- # GH 4667
- # setting with None changes dtype
- s = Series(range(10)).astype(float)
- s[8] = None
- result = s[8]
- assert isna(result)
- s = Series(range(10)).astype(float)
- s[s > 8] = None
- result = s[isna(s)]
- expected = Series(np.nan, index=[9])
- tm.assert_series_equal(result, expected)
- def test_where():
- s = Series(np.random.randn(5))
- cond = s > 0
- rs = s.where(cond).dropna()
- rs2 = s[cond]
- tm.assert_series_equal(rs, rs2)
- rs = s.where(cond, -s)
- tm.assert_series_equal(rs, s.abs())
- rs = s.where(cond)
- assert s.shape == rs.shape
- assert rs is not s
- # test alignment
- cond = Series([True, False, False, True, False], index=s.index)
- s2 = -(s.abs())
- expected = s2[cond].reindex(s2.index[:3]).reindex(s2.index)
- rs = s2.where(cond[:3])
- tm.assert_series_equal(rs, expected)
- expected = s2.abs()
- expected.iloc[0] = s2[0]
- rs = s2.where(cond[:3], -s2)
- tm.assert_series_equal(rs, expected)
- def test_where_error():
- s = Series(np.random.randn(5))
- cond = s > 0
- msg = "Array conditional must be same shape as self"
- with pytest.raises(ValueError, match=msg):
- s.where(1)
- with pytest.raises(ValueError, match=msg):
- s.where(cond[:3].values, -s)
- # GH 2745
- s = Series([1, 2])
- s[[True, False]] = [0, 1]
- expected = Series([0, 2])
- tm.assert_series_equal(s, expected)
- # failures
- msg = "cannot set using a list-like indexer with a different length than the value"
- with pytest.raises(ValueError, match=msg):
- s[[True, False]] = [0, 2, 3]
- with pytest.raises(ValueError, match=msg):
- s[[True, False]] = []
- @pytest.mark.parametrize("klass", [list, tuple, np.array, Series])
- def test_where_array_like(klass):
- # see gh-15414
- s = Series([1, 2, 3])
- cond = [False, True, True]
- expected = Series([np.nan, 2, 3])
- result = s.where(klass(cond))
- tm.assert_series_equal(result, expected)
- @pytest.mark.parametrize(
- "cond",
- [
- [1, 0, 1],
- Series([2, 5, 7]),
- ["True", "False", "True"],
- [Timestamp("2017-01-01"), pd.NaT, Timestamp("2017-01-02")],
- ],
- )
- def test_where_invalid_input(cond):
- # see gh-15414: only boolean arrays accepted
- s = Series([1, 2, 3])
- msg = "Boolean array expected for the condition"
- with pytest.raises(ValueError, match=msg):
- s.where(cond)
- msg = "Array conditional must be same shape as self"
- with pytest.raises(ValueError, match=msg):
- s.where([True])
- def test_where_ndframe_align():
- msg = "Array conditional must be same shape as self"
- s = Series([1, 2, 3])
- cond = [True]
- with pytest.raises(ValueError, match=msg):
- s.where(cond)
- expected = Series([1, np.nan, np.nan])
- out = s.where(Series(cond))
- tm.assert_series_equal(out, expected)
- cond = np.array([False, True, False, True])
- with pytest.raises(ValueError, match=msg):
- s.where(cond)
- expected = Series([np.nan, 2, np.nan])
- out = s.where(Series(cond))
- tm.assert_series_equal(out, expected)
- def test_where_setitem_invalid():
- # GH 2702
- # make sure correct exceptions are raised on invalid list assignment
- msg = (
- lambda x: f"cannot set using a {x} indexer with a "
- "different length than the value"
- )
- # slice
- s = Series(list("abc"))
- with pytest.raises(ValueError, match=msg("slice")):
- s[0:3] = list(range(27))
- s[0:3] = list(range(3))
- expected = Series([0, 1, 2])
- tm.assert_series_equal(s.astype(np.int64), expected)
- # slice with step
- s = Series(list("abcdef"))
- with pytest.raises(ValueError, match=msg("slice")):
- s[0:4:2] = list(range(27))
- s = Series(list("abcdef"))
- s[0:4:2] = list(range(2))
- expected = Series([0, "b", 1, "d", "e", "f"])
- tm.assert_series_equal(s, expected)
- # neg slices
- s = Series(list("abcdef"))
- with pytest.raises(ValueError, match=msg("slice")):
- s[:-1] = list(range(27))
- s[-3:-1] = list(range(2))
- expected = Series(["a", "b", "c", 0, 1, "f"])
- tm.assert_series_equal(s, expected)
- # list
- s = Series(list("abc"))
- with pytest.raises(ValueError, match=msg("list-like")):
- s[[0, 1, 2]] = list(range(27))
- s = Series(list("abc"))
- with pytest.raises(ValueError, match=msg("list-like")):
- s[[0, 1, 2]] = list(range(2))
- # scalar
- s = Series(list("abc"))
- s[0] = list(range(10))
- expected = Series([list(range(10)), "b", "c"])
- tm.assert_series_equal(s, expected)
- @pytest.mark.parametrize("size", range(2, 6))
- @pytest.mark.parametrize(
- "mask", [[True, False, False, False, False], [True, False], [False]]
- )
- @pytest.mark.parametrize(
- "item", [2.0, np.nan, np.finfo(float).max, np.finfo(float).min]
- )
- # Test numpy arrays, lists and tuples as the input to be
- # broadcast
- @pytest.mark.parametrize(
- "box", [lambda x: np.array([x]), lambda x: [x], lambda x: (x,)]
- )
- def test_broadcast(size, mask, item, box):
- # GH#8801, GH#4195
- selection = np.resize(mask, size)
- data = np.arange(size, dtype=float)
- # Construct the expected series by taking the source
- # data or item based on the selection
- expected = Series(
- [item if use_item else data[i] for i, use_item in enumerate(selection)]
- )
- s = Series(data)
- s[selection] = item
- tm.assert_series_equal(s, expected)
- s = Series(data)
- result = s.where(~selection, box(item))
- tm.assert_series_equal(result, expected)
- s = Series(data)
- result = s.mask(selection, box(item))
- tm.assert_series_equal(result, expected)
- def test_where_inplace():
- s = Series(np.random.randn(5))
- cond = s > 0
- rs = s.copy()
- rs.where(cond, inplace=True)
- tm.assert_series_equal(rs.dropna(), s[cond])
- tm.assert_series_equal(rs, s.where(cond))
- rs = s.copy()
- rs.where(cond, -s, inplace=True)
- tm.assert_series_equal(rs, s.where(cond, -s))
- def test_where_dups():
- # GH 4550
- # where crashes with dups in index
- s1 = Series(list(range(3)))
- s2 = Series(list(range(3)))
- comb = pd.concat([s1, s2])
- result = comb.where(comb < 2)
- expected = Series([0, 1, np.nan, 0, 1, np.nan], index=[0, 1, 2, 0, 1, 2])
- tm.assert_series_equal(result, expected)
- # GH 4548
- # inplace updating not working with dups
- comb[comb < 1] = 5
- expected = Series([5, 1, 2, 5, 1, 2], index=[0, 1, 2, 0, 1, 2])
- tm.assert_series_equal(comb, expected)
- comb[comb < 2] += 10
- expected = Series([5, 11, 2, 5, 11, 2], index=[0, 1, 2, 0, 1, 2])
- tm.assert_series_equal(comb, expected)
- def test_where_numeric_with_string():
- # GH 9280
- s = Series([1, 2, 3])
- w = s.where(s > 1, "X")
- assert not is_integer(w[0])
- assert is_integer(w[1])
- assert is_integer(w[2])
- assert isinstance(w[0], str)
- assert w.dtype == "object"
- w = s.where(s > 1, ["X", "Y", "Z"])
- assert not is_integer(w[0])
- assert is_integer(w[1])
- assert is_integer(w[2])
- assert isinstance(w[0], str)
- assert w.dtype == "object"
- w = s.where(s > 1, np.array(["X", "Y", "Z"]))
- assert not is_integer(w[0])
- assert is_integer(w[1])
- assert is_integer(w[2])
- assert isinstance(w[0], str)
- assert w.dtype == "object"
- @pytest.mark.parametrize("dtype", ["timedelta64[ns]", "datetime64[ns]"])
- def test_where_datetimelike_coerce(dtype):
- ser = Series([1, 2], dtype=dtype)
- expected = Series([10, 10])
- mask = np.array([False, False])
- rs = ser.where(mask, [10, 10])
- tm.assert_series_equal(rs, expected)
- rs = ser.where(mask, 10)
- tm.assert_series_equal(rs, expected)
- rs = ser.where(mask, 10.0)
- tm.assert_series_equal(rs, expected)
- rs = ser.where(mask, [10.0, 10.0])
- tm.assert_series_equal(rs, expected)
- rs = ser.where(mask, [10.0, np.nan])
- expected = Series([10, None], dtype="object")
- tm.assert_series_equal(rs, expected)
- def test_where_datetimetz():
- # GH 15701
- timestamps = ["2016-12-31 12:00:04+00:00", "2016-12-31 12:00:04.010000+00:00"]
- ser = Series([Timestamp(t) for t in timestamps], dtype="datetime64[ns, UTC]")
- rs = ser.where(Series([False, True]))
- expected = Series([pd.NaT, ser[1]], dtype="datetime64[ns, UTC]")
- tm.assert_series_equal(rs, expected)
- def test_where_sparse():
- # GH#17198 make sure we dont get an AttributeError for sp_index
- ser = Series(pd.arrays.SparseArray([1, 2]))
- result = ser.where(ser >= 2, 0)
- expected = Series(pd.arrays.SparseArray([0, 2]))
- tm.assert_series_equal(result, expected)
- def test_where_empty_series_and_empty_cond_having_non_bool_dtypes():
- # https://github.com/pandas-dev/pandas/issues/34592
- ser = Series([], dtype=float)
- result = ser.where([])
- tm.assert_series_equal(result, ser)
- def test_where_categorical(frame_or_series):
- # https://github.com/pandas-dev/pandas/issues/18888
- exp = frame_or_series(
- pd.Categorical(["A", "A", "B", "B", np.nan], categories=["A", "B", "C"]),
- dtype="category",
- )
- df = frame_or_series(["A", "A", "B", "B", "C"], dtype="category")
- res = df.where(df != "C")
- tm.assert_equal(exp, res)
- def test_where_datetimelike_categorical(tz_naive_fixture):
- # GH#37682
- tz = tz_naive_fixture
- dr = date_range("2001-01-01", periods=3, tz=tz)._with_freq(None)
- lvals = pd.DatetimeIndex([dr[0], dr[1], pd.NaT])
- rvals = pd.Categorical([dr[0], pd.NaT, dr[2]])
- mask = np.array([True, True, False])
- # DatetimeIndex.where
- res = lvals.where(mask, rvals)
- tm.assert_index_equal(res, dr)
- # DatetimeArray.where
- res = lvals._data._where(mask, rvals)
- tm.assert_datetime_array_equal(res, dr._data)
- # Series.where
- res = Series(lvals).where(mask, rvals)
- tm.assert_series_equal(res, Series(dr))
- # DataFrame.where
- res = pd.DataFrame(lvals).where(mask[:, None], pd.DataFrame(rvals))
- tm.assert_frame_equal(res, pd.DataFrame(dr))
|