123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761 |
- import numpy as np
- import pytest
- import pandas as pd
- from pandas import (
- Categorical,
- DataFrame,
- DatetimeIndex,
- Index,
- Interval,
- IntervalIndex,
- Series,
- TimedeltaIndex,
- Timestamp,
- cut,
- date_range,
- interval_range,
- isna,
- qcut,
- timedelta_range,
- to_datetime,
- )
- import pandas._testing as tm
- from pandas.api.types import CategoricalDtype as CDT
- import pandas.core.reshape.tile as tmod
- def test_simple():
- data = np.ones(5, dtype="int64")
- result = cut(data, 4, labels=False)
- expected = np.array([1, 1, 1, 1, 1])
- tm.assert_numpy_array_equal(result, expected, check_dtype=False)
- @pytest.mark.parametrize("func", [list, np.array])
- def test_bins(func):
- data = func([0.2, 1.4, 2.5, 6.2, 9.7, 2.1])
- result, bins = cut(data, 3, retbins=True)
- intervals = IntervalIndex.from_breaks(bins.round(3))
- intervals = intervals.take([0, 0, 0, 1, 2, 0])
- expected = Categorical(intervals, ordered=True)
- tm.assert_categorical_equal(result, expected)
- tm.assert_almost_equal(bins, np.array([0.1905, 3.36666667, 6.53333333, 9.7]))
- def test_right():
- data = np.array([0.2, 1.4, 2.5, 6.2, 9.7, 2.1, 2.575])
- result, bins = cut(data, 4, right=True, retbins=True)
- intervals = IntervalIndex.from_breaks(bins.round(3))
- expected = Categorical(intervals, ordered=True)
- expected = expected.take([0, 0, 0, 2, 3, 0, 0])
- tm.assert_categorical_equal(result, expected)
- tm.assert_almost_equal(bins, np.array([0.1905, 2.575, 4.95, 7.325, 9.7]))
- def test_no_right():
- data = np.array([0.2, 1.4, 2.5, 6.2, 9.7, 2.1, 2.575])
- result, bins = cut(data, 4, right=False, retbins=True)
- intervals = IntervalIndex.from_breaks(bins.round(3), closed="left")
- intervals = intervals.take([0, 0, 0, 2, 3, 0, 1])
- expected = Categorical(intervals, ordered=True)
- tm.assert_categorical_equal(result, expected)
- tm.assert_almost_equal(bins, np.array([0.2, 2.575, 4.95, 7.325, 9.7095]))
- def test_bins_from_interval_index():
- c = cut(range(5), 3)
- expected = c
- result = cut(range(5), bins=expected.categories)
- tm.assert_categorical_equal(result, expected)
- expected = Categorical.from_codes(
- np.append(c.codes, -1), categories=c.categories, ordered=True
- )
- result = cut(range(6), bins=expected.categories)
- tm.assert_categorical_equal(result, expected)
- def test_bins_from_interval_index_doc_example():
- # Make sure we preserve the bins.
- ages = np.array([10, 15, 13, 12, 23, 25, 28, 59, 60])
- c = cut(ages, bins=[0, 18, 35, 70])
- expected = IntervalIndex.from_tuples([(0, 18), (18, 35), (35, 70)])
- tm.assert_index_equal(c.categories, expected)
- result = cut([25, 20, 50], bins=c.categories)
- tm.assert_index_equal(result.categories, expected)
- tm.assert_numpy_array_equal(result.codes, np.array([1, 1, 2], dtype="int8"))
- def test_bins_not_overlapping_from_interval_index():
- # see gh-23980
- msg = "Overlapping IntervalIndex is not accepted"
- ii = IntervalIndex.from_tuples([(0, 10), (2, 12), (4, 14)])
- with pytest.raises(ValueError, match=msg):
- cut([5, 6], bins=ii)
- def test_bins_not_monotonic():
- msg = "bins must increase monotonically"
- data = [0.2, 1.4, 2.5, 6.2, 9.7, 2.1]
- with pytest.raises(ValueError, match=msg):
- cut(data, [0.1, 1.5, 1, 10])
- @pytest.mark.parametrize(
- "x, bins, expected",
- [
- (
- date_range("2017-12-31", periods=3),
- [Timestamp.min, Timestamp("2018-01-01"), Timestamp.max],
- IntervalIndex.from_tuples(
- [
- (Timestamp.min, Timestamp("2018-01-01")),
- (Timestamp("2018-01-01"), Timestamp.max),
- ]
- ),
- ),
- (
- [-1, 0, 1],
- np.array(
- [np.iinfo(np.int64).min, 0, np.iinfo(np.int64).max], dtype="int64"
- ),
- IntervalIndex.from_tuples(
- [(np.iinfo(np.int64).min, 0), (0, np.iinfo(np.int64).max)]
- ),
- ),
- (
- [
- np.timedelta64(-1, "ns"),
- np.timedelta64(0, "ns"),
- np.timedelta64(1, "ns"),
- ],
- np.array(
- [
- np.timedelta64(-np.iinfo(np.int64).max, "ns"),
- np.timedelta64(0, "ns"),
- np.timedelta64(np.iinfo(np.int64).max, "ns"),
- ]
- ),
- IntervalIndex.from_tuples(
- [
- (
- np.timedelta64(-np.iinfo(np.int64).max, "ns"),
- np.timedelta64(0, "ns"),
- ),
- (
- np.timedelta64(0, "ns"),
- np.timedelta64(np.iinfo(np.int64).max, "ns"),
- ),
- ]
- ),
- ),
- ],
- )
- def test_bins_monotonic_not_overflowing(x, bins, expected):
- # GH 26045
- result = cut(x, bins)
- tm.assert_index_equal(result.categories, expected)
- def test_wrong_num_labels():
- msg = "Bin labels must be one fewer than the number of bin edges"
- data = [0.2, 1.4, 2.5, 6.2, 9.7, 2.1]
- with pytest.raises(ValueError, match=msg):
- cut(data, [0, 1, 10], labels=["foo", "bar", "baz"])
- @pytest.mark.parametrize(
- "x,bins,msg",
- [
- ([], 2, "Cannot cut empty array"),
- ([1, 2, 3], 0.5, "`bins` should be a positive integer"),
- ],
- )
- def test_cut_corner(x, bins, msg):
- with pytest.raises(ValueError, match=msg):
- cut(x, bins)
- @pytest.mark.parametrize("arg", [2, np.eye(2), DataFrame(np.eye(2))])
- @pytest.mark.parametrize("cut_func", [cut, qcut])
- def test_cut_not_1d_arg(arg, cut_func):
- msg = "Input array must be 1 dimensional"
- with pytest.raises(ValueError, match=msg):
- cut_func(arg, 2)
- @pytest.mark.parametrize(
- "data",
- [
- [0, 1, 2, 3, 4, np.inf],
- [-np.inf, 0, 1, 2, 3, 4],
- [-np.inf, 0, 1, 2, 3, 4, np.inf],
- ],
- )
- def test_int_bins_with_inf(data):
- # GH 24314
- msg = "cannot specify integer `bins` when input data contains infinity"
- with pytest.raises(ValueError, match=msg):
- cut(data, bins=3)
- def test_cut_out_of_range_more():
- # see gh-1511
- name = "x"
- ser = Series([0, -1, 0, 1, -3], name=name)
- ind = cut(ser, [0, 1], labels=False)
- exp = Series([np.nan, np.nan, np.nan, 0, np.nan], name=name)
- tm.assert_series_equal(ind, exp)
- @pytest.mark.parametrize(
- "right,breaks,closed",
- [
- (True, [-1e-3, 0.25, 0.5, 0.75, 1], "right"),
- (False, [0, 0.25, 0.5, 0.75, 1 + 1e-3], "left"),
- ],
- )
- def test_labels(right, breaks, closed):
- arr = np.tile(np.arange(0, 1.01, 0.1), 4)
- result, bins = cut(arr, 4, retbins=True, right=right)
- ex_levels = IntervalIndex.from_breaks(breaks, closed=closed)
- tm.assert_index_equal(result.categories, ex_levels)
- def test_cut_pass_series_name_to_factor():
- name = "foo"
- ser = Series(np.random.randn(100), name=name)
- factor = cut(ser, 4)
- assert factor.name == name
- def test_label_precision():
- arr = np.arange(0, 0.73, 0.01)
- result = cut(arr, 4, precision=2)
- ex_levels = IntervalIndex.from_breaks([-0.00072, 0.18, 0.36, 0.54, 0.72])
- tm.assert_index_equal(result.categories, ex_levels)
- @pytest.mark.parametrize("labels", [None, False])
- def test_na_handling(labels):
- arr = np.arange(0, 0.75, 0.01)
- arr[::3] = np.nan
- result = cut(arr, 4, labels=labels)
- result = np.asarray(result)
- expected = np.where(isna(arr), np.nan, result)
- tm.assert_almost_equal(result, expected)
- def test_inf_handling():
- data = np.arange(6)
- data_ser = Series(data, dtype="int64")
- bins = [-np.inf, 2, 4, np.inf]
- result = cut(data, bins)
- result_ser = cut(data_ser, bins)
- ex_uniques = IntervalIndex.from_breaks(bins)
- tm.assert_index_equal(result.categories, ex_uniques)
- assert result[5] == Interval(4, np.inf)
- assert result[0] == Interval(-np.inf, 2)
- assert result_ser[5] == Interval(4, np.inf)
- assert result_ser[0] == Interval(-np.inf, 2)
- def test_cut_out_of_bounds():
- arr = np.random.randn(100)
- result = cut(arr, [-1, 0, 1])
- mask = isna(result)
- ex_mask = (arr < -1) | (arr > 1)
- tm.assert_numpy_array_equal(mask, ex_mask)
- @pytest.mark.parametrize(
- "get_labels,get_expected",
- [
- (
- lambda labels: labels,
- lambda labels: Categorical(
- ["Medium"] + 4 * ["Small"] + ["Medium", "Large"],
- categories=labels,
- ordered=True,
- ),
- ),
- (
- lambda labels: Categorical.from_codes([0, 1, 2], labels),
- lambda labels: Categorical.from_codes([1] + 4 * [0] + [1, 2], labels),
- ),
- ],
- )
- def test_cut_pass_labels(get_labels, get_expected):
- bins = [0, 25, 50, 100]
- arr = [50, 5, 10, 15, 20, 30, 70]
- labels = ["Small", "Medium", "Large"]
- result = cut(arr, bins, labels=get_labels(labels))
- tm.assert_categorical_equal(result, get_expected(labels))
- def test_cut_pass_labels_compat():
- # see gh-16459
- arr = [50, 5, 10, 15, 20, 30, 70]
- labels = ["Good", "Medium", "Bad"]
- result = cut(arr, 3, labels=labels)
- exp = cut(arr, 3, labels=Categorical(labels, categories=labels, ordered=True))
- tm.assert_categorical_equal(result, exp)
- @pytest.mark.parametrize("x", [np.arange(11.0), np.arange(11.0) / 1e10])
- def test_round_frac_just_works(x):
- # It works.
- cut(x, 2)
- @pytest.mark.parametrize(
- "val,precision,expected",
- [
- (-117.9998, 3, -118),
- (117.9998, 3, 118),
- (117.9998, 2, 118),
- (0.000123456, 2, 0.00012),
- ],
- )
- def test_round_frac(val, precision, expected):
- # see gh-1979
- result = tmod._round_frac(val, precision=precision)
- assert result == expected
- def test_cut_return_intervals():
- ser = Series([0, 1, 2, 3, 4, 5, 6, 7, 8])
- result = cut(ser, 3)
- exp_bins = np.linspace(0, 8, num=4).round(3)
- exp_bins[0] -= 0.008
- expected = Series(
- IntervalIndex.from_breaks(exp_bins, closed="right").take(
- [0, 0, 0, 1, 1, 1, 2, 2, 2]
- )
- ).astype(CDT(ordered=True))
- tm.assert_series_equal(result, expected)
- def test_series_ret_bins():
- # see gh-8589
- ser = Series(np.arange(4))
- result, bins = cut(ser, 2, retbins=True)
- expected = Series(
- IntervalIndex.from_breaks([-0.003, 1.5, 3], closed="right").repeat(2)
- ).astype(CDT(ordered=True))
- tm.assert_series_equal(result, expected)
- @pytest.mark.parametrize(
- "kwargs,msg",
- [
- ({"duplicates": "drop"}, None),
- ({}, "Bin edges must be unique"),
- ({"duplicates": "raise"}, "Bin edges must be unique"),
- ({"duplicates": "foo"}, "invalid value for 'duplicates' parameter"),
- ],
- )
- def test_cut_duplicates_bin(kwargs, msg):
- # see gh-20947
- bins = [0, 2, 4, 6, 10, 10]
- values = Series(np.array([1, 3, 5, 7, 9]), index=["a", "b", "c", "d", "e"])
- if msg is not None:
- with pytest.raises(ValueError, match=msg):
- cut(values, bins, **kwargs)
- else:
- result = cut(values, bins, **kwargs)
- expected = cut(values, pd.unique(bins))
- tm.assert_series_equal(result, expected)
- @pytest.mark.parametrize("data", [9.0, -9.0, 0.0])
- @pytest.mark.parametrize("length", [1, 2])
- def test_single_bin(data, length):
- # see gh-14652, gh-15428
- ser = Series([data] * length)
- result = cut(ser, 1, labels=False)
- expected = Series([0] * length, dtype=np.intp)
- tm.assert_series_equal(result, expected)
- @pytest.mark.parametrize(
- "array_1_writeable,array_2_writeable", [(True, True), (True, False), (False, False)]
- )
- def test_cut_read_only(array_1_writeable, array_2_writeable):
- # issue 18773
- array_1 = np.arange(0, 100, 10)
- array_1.flags.writeable = array_1_writeable
- array_2 = np.arange(0, 100, 10)
- array_2.flags.writeable = array_2_writeable
- hundred_elements = np.arange(100)
- tm.assert_categorical_equal(
- cut(hundred_elements, array_1), cut(hundred_elements, array_2)
- )
- @pytest.mark.parametrize(
- "conv",
- [
- lambda v: Timestamp(v),
- lambda v: to_datetime(v),
- lambda v: np.datetime64(v),
- lambda v: Timestamp(v).to_pydatetime(),
- ],
- )
- def test_datetime_bin(conv):
- data = [np.datetime64("2012-12-13"), np.datetime64("2012-12-15")]
- bin_data = ["2012-12-12", "2012-12-14", "2012-12-16"]
- expected = Series(
- IntervalIndex(
- [
- Interval(Timestamp(bin_data[0]), Timestamp(bin_data[1])),
- Interval(Timestamp(bin_data[1]), Timestamp(bin_data[2])),
- ]
- )
- ).astype(CDT(ordered=True))
- bins = [conv(v) for v in bin_data]
- result = Series(cut(data, bins=bins))
- tm.assert_series_equal(result, expected)
- @pytest.mark.parametrize(
- "data",
- [
- to_datetime(Series(["2013-01-01", "2013-01-02", "2013-01-03"])),
- [
- np.datetime64("2013-01-01"),
- np.datetime64("2013-01-02"),
- np.datetime64("2013-01-03"),
- ],
- np.array(
- [
- np.datetime64("2013-01-01"),
- np.datetime64("2013-01-02"),
- np.datetime64("2013-01-03"),
- ]
- ),
- DatetimeIndex(["2013-01-01", "2013-01-02", "2013-01-03"]),
- ],
- )
- def test_datetime_cut(data):
- # see gh-14714
- #
- # Testing time data when it comes in various collection types.
- result, _ = cut(data, 3, retbins=True)
- expected = Series(
- IntervalIndex(
- [
- Interval(
- Timestamp("2012-12-31 23:57:07.200000"),
- Timestamp("2013-01-01 16:00:00"),
- ),
- Interval(
- Timestamp("2013-01-01 16:00:00"), Timestamp("2013-01-02 08:00:00")
- ),
- Interval(
- Timestamp("2013-01-02 08:00:00"), Timestamp("2013-01-03 00:00:00")
- ),
- ]
- )
- ).astype(CDT(ordered=True))
- tm.assert_series_equal(Series(result), expected)
- @pytest.mark.parametrize(
- "bins",
- [
- 3,
- [
- Timestamp("2013-01-01 04:57:07.200000"),
- Timestamp("2013-01-01 21:00:00"),
- Timestamp("2013-01-02 13:00:00"),
- Timestamp("2013-01-03 05:00:00"),
- ],
- ],
- )
- @pytest.mark.parametrize("box", [list, np.array, Index, Series])
- def test_datetime_tz_cut(bins, box):
- # see gh-19872
- tz = "US/Eastern"
- s = Series(date_range("20130101", periods=3, tz=tz))
- if not isinstance(bins, int):
- bins = box(bins)
- result = cut(s, bins)
- expected = Series(
- IntervalIndex(
- [
- Interval(
- Timestamp("2012-12-31 23:57:07.200000", tz=tz),
- Timestamp("2013-01-01 16:00:00", tz=tz),
- ),
- Interval(
- Timestamp("2013-01-01 16:00:00", tz=tz),
- Timestamp("2013-01-02 08:00:00", tz=tz),
- ),
- Interval(
- Timestamp("2013-01-02 08:00:00", tz=tz),
- Timestamp("2013-01-03 00:00:00", tz=tz),
- ),
- ]
- )
- ).astype(CDT(ordered=True))
- tm.assert_series_equal(result, expected)
- def test_datetime_nan_error():
- msg = "bins must be of datetime64 dtype"
- with pytest.raises(ValueError, match=msg):
- cut(date_range("20130101", periods=3), bins=[0, 2, 4])
- def test_datetime_nan_mask():
- result = cut(
- date_range("20130102", periods=5), bins=date_range("20130101", periods=2)
- )
- mask = result.categories.isna()
- tm.assert_numpy_array_equal(mask, np.array([False]))
- mask = result.isna()
- tm.assert_numpy_array_equal(mask, np.array([False, True, True, True, True]))
- @pytest.mark.parametrize("tz", [None, "UTC", "US/Pacific"])
- def test_datetime_cut_roundtrip(tz):
- # see gh-19891
- ser = Series(date_range("20180101", periods=3, tz=tz))
- result, result_bins = cut(ser, 2, retbins=True)
- expected = cut(ser, result_bins)
- tm.assert_series_equal(result, expected)
- expected_bins = DatetimeIndex(
- ["2017-12-31 23:57:07.200000", "2018-01-02 00:00:00", "2018-01-03 00:00:00"]
- )
- expected_bins = expected_bins.tz_localize(tz)
- tm.assert_index_equal(result_bins, expected_bins)
- def test_timedelta_cut_roundtrip():
- # see gh-19891
- ser = Series(timedelta_range("1day", periods=3))
- result, result_bins = cut(ser, 2, retbins=True)
- expected = cut(ser, result_bins)
- tm.assert_series_equal(result, expected)
- expected_bins = TimedeltaIndex(
- ["0 days 23:57:07.200000", "2 days 00:00:00", "3 days 00:00:00"]
- )
- tm.assert_index_equal(result_bins, expected_bins)
- @pytest.mark.parametrize("bins", [6, 7])
- @pytest.mark.parametrize(
- "box, compare",
- [
- (Series, tm.assert_series_equal),
- (np.array, tm.assert_categorical_equal),
- (list, tm.assert_equal),
- ],
- )
- def test_cut_bool_coercion_to_int(bins, box, compare):
- # issue 20303
- data_expected = box([0, 1, 1, 0, 1] * 10)
- data_result = box([False, True, True, False, True] * 10)
- expected = cut(data_expected, bins, duplicates="drop")
- result = cut(data_result, bins, duplicates="drop")
- compare(result, expected)
- @pytest.mark.parametrize("labels", ["foo", 1, True])
- def test_cut_incorrect_labels(labels):
- # GH 13318
- values = range(5)
- msg = "Bin labels must either be False, None or passed in as a list-like argument"
- with pytest.raises(ValueError, match=msg):
- cut(values, 4, labels=labels)
- @pytest.mark.parametrize("bins", [3, [0, 5, 15]])
- @pytest.mark.parametrize("right", [True, False])
- @pytest.mark.parametrize("include_lowest", [True, False])
- def test_cut_nullable_integer(bins, right, include_lowest):
- a = np.random.randint(0, 10, size=50).astype(float)
- a[::2] = np.nan
- result = cut(
- pd.array(a, dtype="Int64"), bins, right=right, include_lowest=include_lowest
- )
- expected = cut(a, bins, right=right, include_lowest=include_lowest)
- tm.assert_categorical_equal(result, expected)
- @pytest.mark.parametrize(
- "data, bins, labels, expected_codes, expected_labels",
- [
- ([15, 17, 19], [14, 16, 18, 20], ["A", "B", "A"], [0, 1, 0], ["A", "B"]),
- ([1, 3, 5], [0, 2, 4, 6, 8], [2, 0, 1, 2], [2, 0, 1], [0, 1, 2]),
- ],
- )
- def test_cut_non_unique_labels(data, bins, labels, expected_codes, expected_labels):
- # GH 33141
- result = cut(data, bins=bins, labels=labels, ordered=False)
- expected = Categorical.from_codes(
- expected_codes, categories=expected_labels, ordered=False
- )
- tm.assert_categorical_equal(result, expected)
- @pytest.mark.parametrize(
- "data, bins, labels, expected_codes, expected_labels",
- [
- ([15, 17, 19], [14, 16, 18, 20], ["C", "B", "A"], [0, 1, 2], ["C", "B", "A"]),
- ([1, 3, 5], [0, 2, 4, 6, 8], [3, 0, 1, 2], [0, 1, 2], [3, 0, 1, 2]),
- ],
- )
- def test_cut_unordered_labels(data, bins, labels, expected_codes, expected_labels):
- # GH 33141
- result = cut(data, bins=bins, labels=labels, ordered=False)
- expected = Categorical.from_codes(
- expected_codes, categories=expected_labels, ordered=False
- )
- tm.assert_categorical_equal(result, expected)
- def test_cut_unordered_with_missing_labels_raises_error():
- # GH 33141
- msg = "'labels' must be provided if 'ordered = False'"
- with pytest.raises(ValueError, match=msg):
- cut([0.5, 3], bins=[0, 1, 2], ordered=False)
- def test_cut_unordered_with_series_labels():
- # https://github.com/pandas-dev/pandas/issues/36603
- s = Series([1, 2, 3, 4, 5])
- bins = Series([0, 2, 4, 6])
- labels = Series(["a", "b", "c"])
- result = cut(s, bins=bins, labels=labels, ordered=False)
- expected = Series(["a", "a", "b", "b", "c"], dtype="category")
- tm.assert_series_equal(result, expected)
- def test_cut_no_warnings():
- df = DataFrame({"value": np.random.randint(0, 100, 20)})
- labels = [f"{i} - {i + 9}" for i in range(0, 100, 10)]
- with tm.assert_produces_warning(False):
- df["group"] = cut(df.value, range(0, 105, 10), right=False, labels=labels)
- def test_cut_with_duplicated_index_lowest_included():
- # GH 42185
- expected = Series(
- [Interval(-0.001, 2, closed="right")] * 3
- + [Interval(2, 4, closed="right"), Interval(-0.001, 2, closed="right")],
- index=[0, 1, 2, 3, 0],
- dtype="category",
- ).cat.as_ordered()
- s = Series([0, 1, 2, 3, 0], index=[0, 1, 2, 3, 0])
- result = cut(s, bins=[0, 2, 4], include_lowest=True)
- tm.assert_series_equal(result, expected)
- def test_cut_with_nonexact_categorical_indices():
- # GH 42424
- ser = Series(range(0, 100))
- ser1 = cut(ser, 10).value_counts().head(5)
- ser2 = cut(ser, 10).value_counts().tail(5)
- result = DataFrame({"1": ser1, "2": ser2})
- index = pd.CategoricalIndex(
- [
- Interval(-0.099, 9.9, closed="right"),
- Interval(9.9, 19.8, closed="right"),
- Interval(19.8, 29.7, closed="right"),
- Interval(29.7, 39.6, closed="right"),
- Interval(39.6, 49.5, closed="right"),
- Interval(49.5, 59.4, closed="right"),
- Interval(59.4, 69.3, closed="right"),
- Interval(69.3, 79.2, closed="right"),
- Interval(79.2, 89.1, closed="right"),
- Interval(89.1, 99, closed="right"),
- ],
- ordered=True,
- )
- expected = DataFrame(
- {"1": [10] * 5 + [np.nan] * 5, "2": [np.nan] * 5 + [10] * 5}, index=index
- )
- tm.assert_frame_equal(expected, result)
- def test_cut_with_timestamp_tuple_labels():
- # GH 40661
- labels = [(Timestamp(10),), (Timestamp(20),), (Timestamp(30),)]
- result = cut([2, 4, 6], bins=[1, 3, 5, 7], labels=labels)
- expected = Categorical.from_codes([0, 1, 2], labels, ordered=True)
- tm.assert_categorical_equal(result, expected)
- def test_cut_bins_datetime_intervalindex():
- # https://github.com/pandas-dev/pandas/issues/46218
- bins = interval_range(Timestamp("2022-02-25"), Timestamp("2022-02-27"), freq="1D")
- # passing Series instead of list is important to trigger bug
- result = cut(Series([Timestamp("2022-02-26")]), bins=bins)
- expected = Categorical.from_codes([0], bins, ordered=True)
- tm.assert_categorical_equal(result.array, expected)
- def test_cut_with_nullable_int64():
- # GH 30787
- series = Series([0, 1, 2, 3, 4, pd.NA, 6, 7], dtype="Int64")
- bins = [0, 2, 4, 6, 8]
- intervals = IntervalIndex.from_breaks(bins)
- expected = Series(
- Categorical.from_codes([-1, 0, 0, 1, 1, -1, 2, 3], intervals, ordered=True)
- )
- result = cut(series, bins=bins)
- tm.assert_series_equal(result, expected)
|