123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230 |
- import numpy as np
- import pytest
- import pandas as pd
- from pandas import (
- DataFrame,
- Index,
- Series,
- concat,
- )
- import pandas._testing as tm
- class TestDataFrameConcat:
- def test_concat_multiple_frames_dtypes(self):
- # GH#2759
- df1 = DataFrame(data=np.ones((10, 2)), columns=["foo", "bar"], dtype=np.float64)
- df2 = DataFrame(data=np.ones((10, 2)), dtype=np.float32)
- results = concat((df1, df2), axis=1).dtypes
- expected = Series(
- [np.dtype("float64")] * 2 + [np.dtype("float32")] * 2,
- index=["foo", "bar", 0, 1],
- )
- tm.assert_series_equal(results, expected)
- def test_concat_tuple_keys(self):
- # GH#14438
- df1 = DataFrame(np.ones((2, 2)), columns=list("AB"))
- df2 = DataFrame(np.ones((3, 2)) * 2, columns=list("AB"))
- results = concat((df1, df2), keys=[("bee", "bah"), ("bee", "boo")])
- expected = DataFrame(
- {
- "A": {
- ("bee", "bah", 0): 1.0,
- ("bee", "bah", 1): 1.0,
- ("bee", "boo", 0): 2.0,
- ("bee", "boo", 1): 2.0,
- ("bee", "boo", 2): 2.0,
- },
- "B": {
- ("bee", "bah", 0): 1.0,
- ("bee", "bah", 1): 1.0,
- ("bee", "boo", 0): 2.0,
- ("bee", "boo", 1): 2.0,
- ("bee", "boo", 2): 2.0,
- },
- }
- )
- tm.assert_frame_equal(results, expected)
- def test_concat_named_keys(self):
- # GH#14252
- df = DataFrame({"foo": [1, 2], "bar": [0.1, 0.2]})
- index = Index(["a", "b"], name="baz")
- concatted_named_from_keys = concat([df, df], keys=index)
- expected_named = DataFrame(
- {"foo": [1, 2, 1, 2], "bar": [0.1, 0.2, 0.1, 0.2]},
- index=pd.MultiIndex.from_product((["a", "b"], [0, 1]), names=["baz", None]),
- )
- tm.assert_frame_equal(concatted_named_from_keys, expected_named)
- index_no_name = Index(["a", "b"], name=None)
- concatted_named_from_names = concat([df, df], keys=index_no_name, names=["baz"])
- tm.assert_frame_equal(concatted_named_from_names, expected_named)
- concatted_unnamed = concat([df, df], keys=index_no_name)
- expected_unnamed = DataFrame(
- {"foo": [1, 2, 1, 2], "bar": [0.1, 0.2, 0.1, 0.2]},
- index=pd.MultiIndex.from_product((["a", "b"], [0, 1]), names=[None, None]),
- )
- tm.assert_frame_equal(concatted_unnamed, expected_unnamed)
- def test_concat_axis_parameter(self):
- # GH#14369
- df1 = DataFrame({"A": [0.1, 0.2]}, index=range(2))
- df2 = DataFrame({"A": [0.3, 0.4]}, index=range(2))
- # Index/row/0 DataFrame
- expected_index = DataFrame({"A": [0.1, 0.2, 0.3, 0.4]}, index=[0, 1, 0, 1])
- concatted_index = concat([df1, df2], axis="index")
- tm.assert_frame_equal(concatted_index, expected_index)
- concatted_row = concat([df1, df2], axis="rows")
- tm.assert_frame_equal(concatted_row, expected_index)
- concatted_0 = concat([df1, df2], axis=0)
- tm.assert_frame_equal(concatted_0, expected_index)
- # Columns/1 DataFrame
- expected_columns = DataFrame(
- [[0.1, 0.3], [0.2, 0.4]], index=[0, 1], columns=["A", "A"]
- )
- concatted_columns = concat([df1, df2], axis="columns")
- tm.assert_frame_equal(concatted_columns, expected_columns)
- concatted_1 = concat([df1, df2], axis=1)
- tm.assert_frame_equal(concatted_1, expected_columns)
- series1 = Series([0.1, 0.2])
- series2 = Series([0.3, 0.4])
- # Index/row/0 Series
- expected_index_series = Series([0.1, 0.2, 0.3, 0.4], index=[0, 1, 0, 1])
- concatted_index_series = concat([series1, series2], axis="index")
- tm.assert_series_equal(concatted_index_series, expected_index_series)
- concatted_row_series = concat([series1, series2], axis="rows")
- tm.assert_series_equal(concatted_row_series, expected_index_series)
- concatted_0_series = concat([series1, series2], axis=0)
- tm.assert_series_equal(concatted_0_series, expected_index_series)
- # Columns/1 Series
- expected_columns_series = DataFrame(
- [[0.1, 0.3], [0.2, 0.4]], index=[0, 1], columns=[0, 1]
- )
- concatted_columns_series = concat([series1, series2], axis="columns")
- tm.assert_frame_equal(concatted_columns_series, expected_columns_series)
- concatted_1_series = concat([series1, series2], axis=1)
- tm.assert_frame_equal(concatted_1_series, expected_columns_series)
- # Testing ValueError
- with pytest.raises(ValueError, match="No axis named"):
- concat([series1, series2], axis="something")
- def test_concat_numerical_names(self):
- # GH#15262, GH#12223
- df = DataFrame(
- {"col": range(9)},
- dtype="int32",
- index=(
- pd.MultiIndex.from_product(
- [["A0", "A1", "A2"], ["B0", "B1", "B2"]], names=[1, 2]
- )
- ),
- )
- result = concat((df.iloc[:2, :], df.iloc[-2:, :]))
- expected = DataFrame(
- {"col": [0, 1, 7, 8]},
- dtype="int32",
- index=pd.MultiIndex.from_tuples(
- [("A0", "B0"), ("A0", "B1"), ("A2", "B1"), ("A2", "B2")], names=[1, 2]
- ),
- )
- tm.assert_frame_equal(result, expected)
- def test_concat_astype_dup_col(self):
- # GH#23049
- df = DataFrame([{"a": "b"}])
- df = concat([df, df], axis=1)
- result = df.astype("category")
- expected = DataFrame(
- np.array(["b", "b"]).reshape(1, 2), columns=["a", "a"]
- ).astype("category")
- tm.assert_frame_equal(result, expected)
- def test_concat_dataframe_keys_bug(self, sort):
- t1 = DataFrame(
- {"value": Series([1, 2, 3], index=Index(["a", "b", "c"], name="id"))}
- )
- t2 = DataFrame({"value": Series([7, 8], index=Index(["a", "b"], name="id"))})
- # it works
- result = concat([t1, t2], axis=1, keys=["t1", "t2"], sort=sort)
- assert list(result.columns) == [("t1", "value"), ("t2", "value")]
- def test_concat_bool_with_int(self):
- # GH#42092 we may want to change this to return object, but that
- # would need a deprecation
- df1 = DataFrame(Series([True, False, True, True], dtype="bool"))
- df2 = DataFrame(Series([1, 0, 1], dtype="int64"))
- result = concat([df1, df2])
- expected = concat([df1.astype("int64"), df2])
- tm.assert_frame_equal(result, expected)
- def test_concat_duplicates_in_index_with_keys(self):
- # GH#42651
- index = [1, 1, 3]
- data = [1, 2, 3]
- df = DataFrame(data=data, index=index)
- result = concat([df], keys=["A"], names=["ID", "date"])
- mi = pd.MultiIndex.from_product([["A"], index], names=["ID", "date"])
- expected = DataFrame(data=data, index=mi)
- tm.assert_frame_equal(result, expected)
- tm.assert_index_equal(result.index.levels[1], Index([1, 3], name="date"))
- @pytest.mark.parametrize("ignore_index", [True, False])
- @pytest.mark.parametrize("order", ["C", "F"])
- @pytest.mark.parametrize("axis", [0, 1])
- def test_concat_copies(self, axis, order, ignore_index, using_copy_on_write):
- # based on asv ConcatDataFrames
- df = DataFrame(np.zeros((10000, 200), dtype=np.float32, order=order))
- res = concat([df] * 5, axis=axis, ignore_index=ignore_index, copy=True)
- if not using_copy_on_write:
- for arr in res._iter_column_arrays():
- for arr2 in df._iter_column_arrays():
- assert not np.shares_memory(arr, arr2)
- def test_outer_sort_columns(self):
- # GH#47127
- df1 = DataFrame({"A": [0], "B": [1], 0: 1})
- df2 = DataFrame({"A": [100]})
- result = concat([df1, df2], ignore_index=True, join="outer", sort=True)
- expected = DataFrame({0: [1.0, np.nan], "A": [0, 100], "B": [1.0, np.nan]})
- tm.assert_frame_equal(result, expected)
- def test_inner_sort_columns(self):
- # GH#47127
- df1 = DataFrame({"A": [0], "B": [1], 0: 1})
- df2 = DataFrame({"A": [100], 0: 2})
- result = concat([df1, df2], ignore_index=True, join="inner", sort=True)
- expected = DataFrame({0: [1, 2], "A": [0, 100]})
- tm.assert_frame_equal(result, expected)
- def test_sort_columns_one_df(self):
- # GH#47127
- df1 = DataFrame({"A": [100], 0: 2})
- result = concat([df1], ignore_index=True, join="inner", sort=True)
- expected = DataFrame({0: [2], "A": [100]})
- tm.assert_frame_equal(result, expected)
|