123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371 |
- from datetime import datetime
- from operator import methodcaller
- import numpy as np
- import pytest
- import pandas as pd
- from pandas import (
- DataFrame,
- Series,
- Timestamp,
- )
- import pandas._testing as tm
- from pandas.core.groupby.grouper import Grouper
- from pandas.core.indexes.datetimes import date_range
- test_series = Series(np.random.randn(1000), index=date_range("1/1/2000", periods=1000))
- def test_apply():
- grouper = Grouper(freq="A", label="right", closed="right")
- grouped = test_series.groupby(grouper)
- def f(x):
- return x.sort_values()[-3:]
- applied = grouped.apply(f)
- expected = test_series.groupby(lambda x: x.year).apply(f)
- applied.index = applied.index.droplevel(0)
- expected.index = expected.index.droplevel(0)
- tm.assert_series_equal(applied, expected)
- def test_count():
- test_series[::3] = np.nan
- expected = test_series.groupby(lambda x: x.year).count()
- grouper = Grouper(freq="A", label="right", closed="right")
- result = test_series.groupby(grouper).count()
- expected.index = result.index
- tm.assert_series_equal(result, expected)
- result = test_series.resample("A").count()
- expected.index = result.index
- tm.assert_series_equal(result, expected)
- def test_numpy_reduction():
- result = test_series.resample("A", closed="right").prod()
- expected = test_series.groupby(lambda x: x.year).agg(np.prod)
- expected.index = result.index
- tm.assert_series_equal(result, expected)
- def test_apply_iteration():
- # #2300
- N = 1000
- ind = date_range(start="2000-01-01", freq="D", periods=N)
- df = DataFrame({"open": 1, "close": 2}, index=ind)
- tg = Grouper(freq="M")
- grouper, _ = tg._get_grouper(df)
- # Errors
- grouped = df.groupby(grouper, group_keys=False)
- def f(df):
- return df["close"] / df["open"]
- # it works!
- result = grouped.apply(f)
- tm.assert_index_equal(result.index, df.index)
- @pytest.mark.parametrize(
- "func",
- [
- tm.makeIntIndex,
- tm.makeStringIndex,
- tm.makeFloatIndex,
- (lambda m: tm.makeCustomIndex(m, 2)),
- ],
- )
- def test_fails_on_no_datetime_index(func):
- n = 2
- index = func(n)
- name = type(index).__name__
- df = DataFrame({"a": np.random.randn(n)}, index=index)
- msg = (
- "Only valid with DatetimeIndex, TimedeltaIndex "
- f"or PeriodIndex, but got an instance of '{name}'"
- )
- with pytest.raises(TypeError, match=msg):
- df.groupby(Grouper(freq="D"))
- def test_aaa_group_order():
- # GH 12840
- # check TimeGrouper perform stable sorts
- n = 20
- data = np.random.randn(n, 4)
- df = DataFrame(data, columns=["A", "B", "C", "D"])
- df["key"] = [
- datetime(2013, 1, 1),
- datetime(2013, 1, 2),
- datetime(2013, 1, 3),
- datetime(2013, 1, 4),
- datetime(2013, 1, 5),
- ] * 4
- grouped = df.groupby(Grouper(key="key", freq="D"))
- tm.assert_frame_equal(grouped.get_group(datetime(2013, 1, 1)), df[::5])
- tm.assert_frame_equal(grouped.get_group(datetime(2013, 1, 2)), df[1::5])
- tm.assert_frame_equal(grouped.get_group(datetime(2013, 1, 3)), df[2::5])
- tm.assert_frame_equal(grouped.get_group(datetime(2013, 1, 4)), df[3::5])
- tm.assert_frame_equal(grouped.get_group(datetime(2013, 1, 5)), df[4::5])
- def test_aggregate_normal(resample_method):
- """Check TimeGrouper's aggregation is identical as normal groupby."""
- data = np.random.randn(20, 4)
- normal_df = DataFrame(data, columns=["A", "B", "C", "D"])
- normal_df["key"] = [1, 2, 3, 4, 5] * 4
- dt_df = DataFrame(data, columns=["A", "B", "C", "D"])
- dt_df["key"] = [
- datetime(2013, 1, 1),
- datetime(2013, 1, 2),
- datetime(2013, 1, 3),
- datetime(2013, 1, 4),
- datetime(2013, 1, 5),
- ] * 4
- normal_grouped = normal_df.groupby("key")
- dt_grouped = dt_df.groupby(Grouper(key="key", freq="D"))
- expected = getattr(normal_grouped, resample_method)()
- dt_result = getattr(dt_grouped, resample_method)()
- expected.index = date_range(start="2013-01-01", freq="D", periods=5, name="key")
- tm.assert_equal(expected, dt_result)
- @pytest.mark.xfail(reason="if TimeGrouper is used included, 'nth' doesn't work yet")
- def test_aggregate_nth():
- """Check TimeGrouper's aggregation is identical as normal groupby."""
- data = np.random.randn(20, 4)
- normal_df = DataFrame(data, columns=["A", "B", "C", "D"])
- normal_df["key"] = [1, 2, 3, 4, 5] * 4
- dt_df = DataFrame(data, columns=["A", "B", "C", "D"])
- dt_df["key"] = [
- datetime(2013, 1, 1),
- datetime(2013, 1, 2),
- datetime(2013, 1, 3),
- datetime(2013, 1, 4),
- datetime(2013, 1, 5),
- ] * 4
- normal_grouped = normal_df.groupby("key")
- dt_grouped = dt_df.groupby(Grouper(key="key", freq="D"))
- expected = normal_grouped.nth(3)
- expected.index = date_range(start="2013-01-01", freq="D", periods=5, name="key")
- dt_result = dt_grouped.nth(3)
- tm.assert_frame_equal(expected, dt_result)
- @pytest.mark.parametrize(
- "method, method_args, unit",
- [
- ("sum", {}, 0),
- ("sum", {"min_count": 0}, 0),
- ("sum", {"min_count": 1}, np.nan),
- ("prod", {}, 1),
- ("prod", {"min_count": 0}, 1),
- ("prod", {"min_count": 1}, np.nan),
- ],
- )
- def test_resample_entirely_nat_window(method, method_args, unit):
- s = Series([0] * 2 + [np.nan] * 2, index=date_range("2017", periods=4))
- result = methodcaller(method, **method_args)(s.resample("2d"))
- expected = Series(
- [0.0, unit], index=pd.DatetimeIndex(["2017-01-01", "2017-01-03"], freq="2D")
- )
- tm.assert_series_equal(result, expected)
- @pytest.mark.parametrize(
- "func, fill_value",
- [("min", np.nan), ("max", np.nan), ("sum", 0), ("prod", 1), ("count", 0)],
- )
- def test_aggregate_with_nat(func, fill_value):
- # check TimeGrouper's aggregation is identical as normal groupby
- # if NaT is included, 'var', 'std', 'mean', 'first','last'
- # and 'nth' doesn't work yet
- n = 20
- data = np.random.randn(n, 4).astype("int64")
- normal_df = DataFrame(data, columns=["A", "B", "C", "D"])
- normal_df["key"] = [1, 2, np.nan, 4, 5] * 4
- dt_df = DataFrame(data, columns=["A", "B", "C", "D"])
- dt_df["key"] = [
- datetime(2013, 1, 1),
- datetime(2013, 1, 2),
- pd.NaT,
- datetime(2013, 1, 4),
- datetime(2013, 1, 5),
- ] * 4
- normal_grouped = normal_df.groupby("key")
- dt_grouped = dt_df.groupby(Grouper(key="key", freq="D"))
- normal_result = getattr(normal_grouped, func)()
- dt_result = getattr(dt_grouped, func)()
- pad = DataFrame([[fill_value] * 4], index=[3], columns=["A", "B", "C", "D"])
- expected = pd.concat([normal_result, pad])
- expected = expected.sort_index()
- dti = date_range(start="2013-01-01", freq="D", periods=5, name="key")
- expected.index = dti._with_freq(None) # TODO: is this desired?
- tm.assert_frame_equal(expected, dt_result)
- assert dt_result.index.name == "key"
- def test_aggregate_with_nat_size():
- # GH 9925
- n = 20
- data = np.random.randn(n, 4).astype("int64")
- normal_df = DataFrame(data, columns=["A", "B", "C", "D"])
- normal_df["key"] = [1, 2, np.nan, 4, 5] * 4
- dt_df = DataFrame(data, columns=["A", "B", "C", "D"])
- dt_df["key"] = [
- datetime(2013, 1, 1),
- datetime(2013, 1, 2),
- pd.NaT,
- datetime(2013, 1, 4),
- datetime(2013, 1, 5),
- ] * 4
- normal_grouped = normal_df.groupby("key")
- dt_grouped = dt_df.groupby(Grouper(key="key", freq="D"))
- normal_result = normal_grouped.size()
- dt_result = dt_grouped.size()
- pad = Series([0], index=[3])
- expected = pd.concat([normal_result, pad])
- expected = expected.sort_index()
- expected.index = date_range(
- start="2013-01-01", freq="D", periods=5, name="key"
- )._with_freq(None)
- tm.assert_series_equal(expected, dt_result)
- assert dt_result.index.name == "key"
- def test_repr():
- # GH18203
- result = repr(Grouper(key="A", freq="H"))
- expected = (
- "TimeGrouper(key='A', freq=<Hour>, axis=0, sort=True, dropna=True, "
- "closed='left', label='left', how='mean', "
- "convention='e', origin='start_day')"
- )
- assert result == expected
- result = repr(Grouper(key="A", freq="H", origin="2000-01-01"))
- expected = (
- "TimeGrouper(key='A', freq=<Hour>, axis=0, sort=True, dropna=True, "
- "closed='left', label='left', how='mean', "
- "convention='e', origin=Timestamp('2000-01-01 00:00:00'))"
- )
- assert result == expected
- @pytest.mark.parametrize(
- "method, method_args, expected_values",
- [
- ("sum", {}, [1, 0, 1]),
- ("sum", {"min_count": 0}, [1, 0, 1]),
- ("sum", {"min_count": 1}, [1, np.nan, 1]),
- ("sum", {"min_count": 2}, [np.nan, np.nan, np.nan]),
- ("prod", {}, [1, 1, 1]),
- ("prod", {"min_count": 0}, [1, 1, 1]),
- ("prod", {"min_count": 1}, [1, np.nan, 1]),
- ("prod", {"min_count": 2}, [np.nan, np.nan, np.nan]),
- ],
- )
- def test_upsample_sum(method, method_args, expected_values):
- s = Series(1, index=date_range("2017", periods=2, freq="H"))
- resampled = s.resample("30T")
- index = pd.DatetimeIndex(
- ["2017-01-01T00:00:00", "2017-01-01T00:30:00", "2017-01-01T01:00:00"],
- freq="30T",
- )
- result = methodcaller(method, **method_args)(resampled)
- expected = Series(expected_values, index=index)
- tm.assert_series_equal(result, expected)
- def test_groupby_resample_interpolate():
- # GH 35325
- d = {"price": [10, 11, 9], "volume": [50, 60, 50]}
- df = DataFrame(d)
- df["week_starting"] = date_range("01/01/2018", periods=3, freq="W")
- result = (
- df.set_index("week_starting")
- .groupby("volume")
- .resample("1D")
- .interpolate(method="linear")
- )
- expected_ind = pd.MultiIndex.from_tuples(
- [
- (50, Timestamp("2018-01-07")),
- (50, Timestamp("2018-01-08")),
- (50, Timestamp("2018-01-09")),
- (50, Timestamp("2018-01-10")),
- (50, Timestamp("2018-01-11")),
- (50, Timestamp("2018-01-12")),
- (50, Timestamp("2018-01-13")),
- (50, Timestamp("2018-01-14")),
- (50, Timestamp("2018-01-15")),
- (50, Timestamp("2018-01-16")),
- (50, Timestamp("2018-01-17")),
- (50, Timestamp("2018-01-18")),
- (50, Timestamp("2018-01-19")),
- (50, Timestamp("2018-01-20")),
- (50, Timestamp("2018-01-21")),
- (60, Timestamp("2018-01-14")),
- ],
- names=["volume", "week_starting"],
- )
- expected = DataFrame(
- data={
- "price": [
- 10.0,
- 9.928571428571429,
- 9.857142857142858,
- 9.785714285714286,
- 9.714285714285714,
- 9.642857142857142,
- 9.571428571428571,
- 9.5,
- 9.428571428571429,
- 9.357142857142858,
- 9.285714285714286,
- 9.214285714285714,
- 9.142857142857142,
- 9.071428571428571,
- 9.0,
- 11.0,
- ],
- "volume": [50.0] * 15 + [60],
- },
- index=expected_ind,
- )
- tm.assert_frame_equal(result, expected)
|