123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642 |
- from textwrap import dedent
- import numpy as np
- import pytest
- from pandas.compat import is_platform_windows
- from pandas.util._test_decorators import async_mark
- import pandas as pd
- from pandas import (
- DataFrame,
- Index,
- Series,
- TimedeltaIndex,
- Timestamp,
- )
- import pandas._testing as tm
- from pandas.core.indexes.datetimes import date_range
- test_frame = DataFrame(
- {"A": [1] * 20 + [2] * 12 + [3] * 8, "B": np.arange(40)},
- index=date_range("1/1/2000", freq="s", periods=40),
- )
- @async_mark()
- async def test_tab_complete_ipython6_warning(ip):
- from IPython.core.completer import provisionalcompleter
- code = dedent(
- """\
- import pandas._testing as tm
- s = tm.makeTimeSeries()
- rs = s.resample("D")
- """
- )
- await ip.run_code(code)
- # GH 31324 newer jedi version raises Deprecation warning;
- # appears resolved 2021-02-02
- with tm.assert_produces_warning(None):
- with provisionalcompleter("ignore"):
- list(ip.Completer.completions("rs.", 1))
- def test_deferred_with_groupby():
- # GH 12486
- # support deferred resample ops with groupby
- data = [
- ["2010-01-01", "A", 2],
- ["2010-01-02", "A", 3],
- ["2010-01-05", "A", 8],
- ["2010-01-10", "A", 7],
- ["2010-01-13", "A", 3],
- ["2010-01-01", "B", 5],
- ["2010-01-03", "B", 2],
- ["2010-01-04", "B", 1],
- ["2010-01-11", "B", 7],
- ["2010-01-14", "B", 3],
- ]
- df = DataFrame(data, columns=["date", "id", "score"])
- df.date = pd.to_datetime(df.date)
- def f_0(x):
- return x.set_index("date").resample("D").asfreq()
- expected = df.groupby("id").apply(f_0)
- result = df.set_index("date").groupby("id").resample("D").asfreq()
- tm.assert_frame_equal(result, expected)
- df = DataFrame(
- {
- "date": date_range(start="2016-01-01", periods=4, freq="W"),
- "group": [1, 1, 2, 2],
- "val": [5, 6, 7, 8],
- }
- ).set_index("date")
- def f_1(x):
- return x.resample("1D").ffill()
- expected = df.groupby("group").apply(f_1)
- result = df.groupby("group").resample("1D").ffill()
- tm.assert_frame_equal(result, expected)
- def test_getitem():
- g = test_frame.groupby("A")
- expected = g.B.apply(lambda x: x.resample("2s").mean())
- result = g.resample("2s").B.mean()
- tm.assert_series_equal(result, expected)
- result = g.B.resample("2s").mean()
- tm.assert_series_equal(result, expected)
- result = g.resample("2s").mean().B
- tm.assert_series_equal(result, expected)
- def test_getitem_multiple():
- # GH 13174
- # multiple calls after selection causing an issue with aliasing
- data = [{"id": 1, "buyer": "A"}, {"id": 2, "buyer": "B"}]
- df = DataFrame(data, index=date_range("2016-01-01", periods=2))
- r = df.groupby("id").resample("1D")
- result = r["buyer"].count()
- expected = Series(
- [1, 1],
- index=pd.MultiIndex.from_tuples(
- [(1, Timestamp("2016-01-01")), (2, Timestamp("2016-01-02"))],
- names=["id", None],
- ),
- name="buyer",
- )
- tm.assert_series_equal(result, expected)
- result = r["buyer"].count()
- tm.assert_series_equal(result, expected)
- def test_groupby_resample_on_api_with_getitem():
- # GH 17813
- df = DataFrame(
- {"id": list("aabbb"), "date": date_range("1-1-2016", periods=5), "data": 1}
- )
- exp = df.set_index("date").groupby("id").resample("2D")["data"].sum()
- result = df.groupby("id").resample("2D", on="date")["data"].sum()
- tm.assert_series_equal(result, exp)
- def test_groupby_with_origin():
- # GH 31809
- freq = "1399min" # prime number that is smaller than 24h
- start, end = "1/1/2000 00:00:00", "1/31/2000 00:00"
- middle = "1/15/2000 00:00:00"
- rng = date_range(start, end, freq="1231min") # prime number
- ts = Series(np.random.randn(len(rng)), index=rng)
- ts2 = ts[middle:end]
- # proves that grouper without a fixed origin does not work
- # when dealing with unusual frequencies
- simple_grouper = pd.Grouper(freq=freq)
- count_ts = ts.groupby(simple_grouper).agg("count")
- count_ts = count_ts[middle:end]
- count_ts2 = ts2.groupby(simple_grouper).agg("count")
- with pytest.raises(AssertionError, match="Index are different"):
- tm.assert_index_equal(count_ts.index, count_ts2.index)
- # test origin on 1970-01-01 00:00:00
- origin = Timestamp(0)
- adjusted_grouper = pd.Grouper(freq=freq, origin=origin)
- adjusted_count_ts = ts.groupby(adjusted_grouper).agg("count")
- adjusted_count_ts = adjusted_count_ts[middle:end]
- adjusted_count_ts2 = ts2.groupby(adjusted_grouper).agg("count")
- tm.assert_series_equal(adjusted_count_ts, adjusted_count_ts2)
- # test origin on 2049-10-18 20:00:00
- origin_future = Timestamp(0) + pd.Timedelta("1399min") * 30_000
- adjusted_grouper2 = pd.Grouper(freq=freq, origin=origin_future)
- adjusted2_count_ts = ts.groupby(adjusted_grouper2).agg("count")
- adjusted2_count_ts = adjusted2_count_ts[middle:end]
- adjusted2_count_ts2 = ts2.groupby(adjusted_grouper2).agg("count")
- tm.assert_series_equal(adjusted2_count_ts, adjusted2_count_ts2)
- # both grouper use an adjusted timestamp that is a multiple of 1399 min
- # they should be equals even if the adjusted_timestamp is in the future
- tm.assert_series_equal(adjusted_count_ts, adjusted2_count_ts2)
- def test_nearest():
- # GH 17496
- # Resample nearest
- index = date_range("1/1/2000", periods=3, freq="T")
- result = Series(range(3), index=index).resample("20s").nearest()
- expected = Series(
- [0, 0, 1, 1, 1, 2, 2],
- index=pd.DatetimeIndex(
- [
- "2000-01-01 00:00:00",
- "2000-01-01 00:00:20",
- "2000-01-01 00:00:40",
- "2000-01-01 00:01:00",
- "2000-01-01 00:01:20",
- "2000-01-01 00:01:40",
- "2000-01-01 00:02:00",
- ],
- dtype="datetime64[ns]",
- freq="20S",
- ),
- )
- tm.assert_series_equal(result, expected)
- @pytest.mark.parametrize(
- "f",
- [
- "first",
- "last",
- "median",
- "sem",
- "sum",
- "mean",
- "min",
- "max",
- "size",
- "count",
- "nearest",
- "bfill",
- "ffill",
- "asfreq",
- "ohlc",
- ],
- )
- def test_methods(f):
- g = test_frame.groupby("A")
- r = g.resample("2s")
- result = getattr(r, f)()
- expected = g.apply(lambda x: getattr(x.resample("2s"), f)())
- tm.assert_equal(result, expected)
- def test_methods_nunique():
- # series only
- g = test_frame.groupby("A")
- r = g.resample("2s")
- result = r.B.nunique()
- expected = g.B.apply(lambda x: x.resample("2s").nunique())
- tm.assert_series_equal(result, expected)
- @pytest.mark.parametrize("f", ["std", "var"])
- def test_methods_std_var(f):
- g = test_frame.groupby("A")
- r = g.resample("2s")
- result = getattr(r, f)(ddof=1)
- expected = g.apply(lambda x: getattr(x.resample("2s"), f)(ddof=1))
- tm.assert_frame_equal(result, expected)
- def test_apply():
- g = test_frame.groupby("A")
- r = g.resample("2s")
- # reduction
- expected = g.resample("2s").sum()
- def f_0(x):
- return x.resample("2s").sum()
- result = r.apply(f_0)
- tm.assert_frame_equal(result, expected)
- def f_1(x):
- return x.resample("2s").apply(lambda y: y.sum())
- result = g.apply(f_1)
- # y.sum() results in int64 instead of int32 on 32-bit architectures
- expected = expected.astype("int64")
- tm.assert_frame_equal(result, expected)
- def test_apply_with_mutated_index():
- # GH 15169
- index = date_range("1-1-2015", "12-31-15", freq="D")
- df = DataFrame(data={"col1": np.random.rand(len(index))}, index=index)
- def f(x):
- s = Series([1, 2], index=["a", "b"])
- return s
- expected = df.groupby(pd.Grouper(freq="M")).apply(f)
- result = df.resample("M").apply(f)
- tm.assert_frame_equal(result, expected)
- # A case for series
- expected = df["col1"].groupby(pd.Grouper(freq="M"), group_keys=False).apply(f)
- result = df["col1"].resample("M").apply(f)
- tm.assert_series_equal(result, expected)
- def test_apply_columns_multilevel():
- # GH 16231
- cols = pd.MultiIndex.from_tuples([("A", "a", "", "one"), ("B", "b", "i", "two")])
- ind = date_range(start="2017-01-01", freq="15Min", periods=8)
- df = DataFrame(np.array([0] * 16).reshape(8, 2), index=ind, columns=cols)
- agg_dict = {col: (np.sum if col[3] == "one" else np.mean) for col in df.columns}
- result = df.resample("H").apply(lambda x: agg_dict[x.name](x))
- expected = DataFrame(
- 2 * [[0, 0.0]],
- index=date_range(start="2017-01-01", freq="1H", periods=2),
- columns=pd.MultiIndex.from_tuples(
- [("A", "a", "", "one"), ("B", "b", "i", "two")]
- ),
- )
- tm.assert_frame_equal(result, expected)
- def test_resample_groupby_with_label():
- # GH 13235
- index = date_range("2000-01-01", freq="2D", periods=5)
- df = DataFrame(index=index, data={"col0": [0, 0, 1, 1, 2], "col1": [1, 1, 1, 1, 1]})
- result = df.groupby("col0").resample("1W", label="left").sum()
- mi = [
- np.array([0, 0, 1, 2], dtype=np.int64),
- pd.to_datetime(
- np.array(["1999-12-26", "2000-01-02", "2000-01-02", "2000-01-02"])
- ),
- ]
- mindex = pd.MultiIndex.from_arrays(mi, names=["col0", None])
- expected = DataFrame(
- data={"col0": [0, 0, 2, 2], "col1": [1, 1, 2, 1]}, index=mindex
- )
- tm.assert_frame_equal(result, expected)
- def test_consistency_with_window():
- # consistent return values with window
- df = test_frame
- expected = Index([1, 2, 3], name="A")
- result = df.groupby("A").resample("2s").mean()
- assert result.index.nlevels == 2
- tm.assert_index_equal(result.index.levels[0], expected)
- result = df.groupby("A").rolling(20).mean()
- assert result.index.nlevels == 2
- tm.assert_index_equal(result.index.levels[0], expected)
- def test_median_duplicate_columns():
- # GH 14233
- df = DataFrame(
- np.random.randn(20, 3),
- columns=list("aaa"),
- index=date_range("2012-01-01", periods=20, freq="s"),
- )
- df2 = df.copy()
- df2.columns = ["a", "b", "c"]
- expected = df2.resample("5s").median()
- result = df.resample("5s").median()
- expected.columns = result.columns
- tm.assert_frame_equal(result, expected)
- def test_apply_to_one_column_of_df():
- # GH: 36951
- df = DataFrame(
- {"col": range(10), "col1": range(10, 20)},
- index=date_range("2012-01-01", periods=10, freq="20min"),
- )
- # access "col" via getattr -> make sure we handle AttributeError
- result = df.resample("H").apply(lambda group: group.col.sum())
- expected = Series(
- [3, 12, 21, 9], index=date_range("2012-01-01", periods=4, freq="H")
- )
- tm.assert_series_equal(result, expected)
- # access "col" via _getitem__ -> make sure we handle KeyErrpr
- result = df.resample("H").apply(lambda group: group["col"].sum())
- tm.assert_series_equal(result, expected)
- def test_resample_groupby_agg():
- # GH: 33548
- df = DataFrame(
- {
- "cat": [
- "cat_1",
- "cat_1",
- "cat_2",
- "cat_1",
- "cat_2",
- "cat_1",
- "cat_2",
- "cat_1",
- ],
- "num": [5, 20, 22, 3, 4, 30, 10, 50],
- "date": [
- "2019-2-1",
- "2018-02-03",
- "2020-3-11",
- "2019-2-2",
- "2019-2-2",
- "2018-12-4",
- "2020-3-11",
- "2020-12-12",
- ],
- }
- )
- df["date"] = pd.to_datetime(df["date"])
- resampled = df.groupby("cat").resample("Y", on="date")
- expected = resampled[["num"]].sum()
- result = resampled.agg({"num": "sum"})
- tm.assert_frame_equal(result, expected)
- def test_resample_groupby_agg_listlike():
- # GH 42905
- ts = Timestamp("2021-02-28 00:00:00")
- df = DataFrame({"class": ["beta"], "value": [69]}, index=Index([ts], name="date"))
- resampled = df.groupby("class").resample("M")["value"]
- result = resampled.agg(["sum", "size"])
- expected = DataFrame(
- [[69, 1]],
- index=pd.MultiIndex.from_tuples([("beta", ts)], names=["class", "date"]),
- columns=["sum", "size"],
- )
- tm.assert_frame_equal(result, expected)
- @pytest.mark.parametrize("keys", [["a"], ["a", "b"]])
- def test_empty(keys):
- # GH 26411
- df = DataFrame([], columns=["a", "b"], index=TimedeltaIndex([]))
- result = df.groupby(keys).resample(rule=pd.to_timedelta("00:00:01")).mean()
- expected = (
- DataFrame(columns=["a", "b"])
- .set_index(keys, drop=False)
- .set_index(TimedeltaIndex([]), append=True)
- )
- if len(keys) == 1:
- expected.index.name = keys[0]
- tm.assert_frame_equal(result, expected)
- @pytest.mark.parametrize("consolidate", [True, False])
- def test_resample_groupby_agg_object_dtype_all_nan(consolidate):
- # https://github.com/pandas-dev/pandas/issues/39329
- dates = date_range("2020-01-01", periods=15, freq="D")
- df1 = DataFrame({"key": "A", "date": dates, "col1": range(15), "col_object": "val"})
- df2 = DataFrame({"key": "B", "date": dates, "col1": range(15)})
- df = pd.concat([df1, df2], ignore_index=True)
- if consolidate:
- df = df._consolidate()
- result = df.groupby(["key"]).resample("W", on="date").min()
- idx = pd.MultiIndex.from_arrays(
- [
- ["A"] * 3 + ["B"] * 3,
- pd.to_datetime(["2020-01-05", "2020-01-12", "2020-01-19"] * 2),
- ],
- names=["key", "date"],
- )
- expected = DataFrame(
- {
- "key": ["A"] * 3 + ["B"] * 3,
- "col1": [0, 5, 12] * 2,
- "col_object": ["val"] * 3 + [np.nan] * 3,
- },
- index=idx,
- )
- tm.assert_frame_equal(result, expected)
- def test_groupby_resample_with_list_of_keys():
- # GH 47362
- df = DataFrame(
- data={
- "date": date_range(start="2016-01-01", periods=8),
- "group": [0, 0, 0, 0, 1, 1, 1, 1],
- "val": [1, 7, 5, 2, 3, 10, 5, 1],
- }
- )
- result = df.groupby("group").resample("2D", on="date")[["val"]].mean()
- expected = DataFrame(
- data={
- "val": [4.0, 3.5, 6.5, 3.0],
- },
- index=Index(
- data=[
- (0, Timestamp("2016-01-01")),
- (0, Timestamp("2016-01-03")),
- (1, Timestamp("2016-01-05")),
- (1, Timestamp("2016-01-07")),
- ],
- name=("group", "date"),
- ),
- )
- tm.assert_frame_equal(result, expected)
- @pytest.mark.parametrize("keys", [["a"], ["a", "b"]])
- def test_resample_no_index(keys):
- # GH 47705
- df = DataFrame([], columns=["a", "b", "date"])
- df["date"] = pd.to_datetime(df["date"])
- df = df.set_index("date")
- result = df.groupby(keys).resample(rule=pd.to_timedelta("00:00:01")).mean()
- expected = DataFrame(columns=["a", "b", "date"]).set_index(keys, drop=False)
- expected["date"] = pd.to_datetime(expected["date"])
- expected = expected.set_index("date", append=True, drop=True)
- if len(keys) == 1:
- expected.index.name = keys[0]
- tm.assert_frame_equal(result, expected)
- def test_resample_no_columns():
- # GH#52484
- df = DataFrame(
- index=Index(
- pd.to_datetime(
- ["2018-01-01 00:00:00", "2018-01-01 12:00:00", "2018-01-02 00:00:00"]
- ),
- name="date",
- )
- )
- result = df.groupby([0, 0, 1]).resample(rule=pd.to_timedelta("06:00:00")).mean()
- index = pd.to_datetime(
- [
- "2018-01-01 00:00:00",
- "2018-01-01 06:00:00",
- "2018-01-01 12:00:00",
- "2018-01-02 00:00:00",
- ]
- )
- expected = DataFrame(
- index=pd.MultiIndex(
- levels=[np.array([0, 1], dtype=np.intp), index],
- codes=[[0, 0, 0, 1], [0, 1, 2, 3]],
- names=[None, "date"],
- )
- )
- # GH#52710 - Index comes out as 32-bit on 64-bit Windows
- tm.assert_frame_equal(result, expected, check_index_type=not is_platform_windows())
- def test_groupby_resample_size_all_index_same():
- # GH 46826
- df = DataFrame(
- {"A": [1] * 3 + [2] * 3 + [1] * 3 + [2] * 3, "B": np.arange(12)},
- index=date_range("31/12/2000 18:00", freq="H", periods=12),
- )
- result = df.groupby("A").resample("D").size()
- expected = Series(
- 3,
- index=pd.MultiIndex.from_tuples(
- [
- (1, Timestamp("2000-12-31")),
- (1, Timestamp("2001-01-01")),
- (2, Timestamp("2000-12-31")),
- (2, Timestamp("2001-01-01")),
- ],
- names=["A", None],
- ),
- )
- tm.assert_series_equal(result, expected)
- def test_groupby_resample_on_index_with_list_of_keys():
- # GH 50840
- df = DataFrame(
- data={
- "group": [0, 0, 0, 0, 1, 1, 1, 1],
- "val": [3, 1, 4, 1, 5, 9, 2, 6],
- },
- index=Series(
- date_range(start="2016-01-01", periods=8),
- name="date",
- ),
- )
- result = df.groupby("group").resample("2D")[["val"]].mean()
- expected = DataFrame(
- data={
- "val": [2.0, 2.5, 7.0, 4.0],
- },
- index=Index(
- data=[
- (0, Timestamp("2016-01-01")),
- (0, Timestamp("2016-01-03")),
- (1, Timestamp("2016-01-05")),
- (1, Timestamp("2016-01-07")),
- ],
- name=("group", "date"),
- ),
- )
- tm.assert_frame_equal(result, expected)
- def test_groupby_resample_on_index_with_list_of_keys_multi_columns():
- # GH 50876
- df = DataFrame(
- data={
- "group": [0, 0, 0, 0, 1, 1, 1, 1],
- "first_val": [3, 1, 4, 1, 5, 9, 2, 6],
- "second_val": [2, 7, 1, 8, 2, 8, 1, 8],
- "third_val": [1, 4, 1, 4, 2, 1, 3, 5],
- },
- index=Series(
- date_range(start="2016-01-01", periods=8),
- name="date",
- ),
- )
- result = df.groupby("group").resample("2D")[["first_val", "second_val"]].mean()
- expected = DataFrame(
- data={
- "first_val": [2.0, 2.5, 7.0, 4.0],
- "second_val": [4.5, 4.5, 5.0, 4.5],
- },
- index=Index(
- data=[
- (0, Timestamp("2016-01-01")),
- (0, Timestamp("2016-01-03")),
- (1, Timestamp("2016-01-05")),
- (1, Timestamp("2016-01-07")),
- ],
- name=("group", "date"),
- ),
- )
- tm.assert_frame_equal(result, expected)
- def test_groupby_resample_on_index_with_list_of_keys_missing_column():
- # GH 50876
- df = DataFrame(
- data={
- "group": [0, 0, 0, 0, 1, 1, 1, 1],
- "val": [3, 1, 4, 1, 5, 9, 2, 6],
- },
- index=Series(
- date_range(start="2016-01-01", periods=8),
- name="date",
- ),
- )
- with pytest.raises(KeyError, match="Columns not found"):
- df.groupby("group").resample("2D")[["val_not_in_dataframe"]].mean()
|