123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262 |
- from datetime import datetime
- import numpy as np
- import pytest
- from pandas import (
- DataFrame,
- NaT,
- PeriodIndex,
- Series,
- )
- import pandas._testing as tm
- from pandas.core.groupby.groupby import DataError
- from pandas.core.groupby.grouper import Grouper
- from pandas.core.indexes.datetimes import date_range
- from pandas.core.indexes.period import period_range
- from pandas.core.indexes.timedeltas import timedelta_range
- from pandas.core.resample import _asfreq_compat
- # a fixture value can be overridden by the test parameter value. Note that the
- # value of the fixture can be overridden this way even if the test doesn't use
- # it directly (doesn't mention it in the function prototype).
- # see https://docs.pytest.org/en/latest/fixture.html#override-a-fixture-with-direct-test-parametrization # noqa:E501
- # in this module we override the fixture values defined in conftest.py
- # tuples of '_index_factory,_series_name,_index_start,_index_end'
- DATE_RANGE = (date_range, "dti", datetime(2005, 1, 1), datetime(2005, 1, 10))
- PERIOD_RANGE = (period_range, "pi", datetime(2005, 1, 1), datetime(2005, 1, 10))
- TIMEDELTA_RANGE = (timedelta_range, "tdi", "1 day", "10 day")
- all_ts = pytest.mark.parametrize(
- "_index_factory,_series_name,_index_start,_index_end",
- [DATE_RANGE, PERIOD_RANGE, TIMEDELTA_RANGE],
- )
- @pytest.fixture
- def create_index(_index_factory):
- def _create_index(*args, **kwargs):
- """return the _index_factory created using the args, kwargs"""
- return _index_factory(*args, **kwargs)
- return _create_index
- @pytest.mark.parametrize("freq", ["2D", "1H"])
- @pytest.mark.parametrize(
- "_index_factory,_series_name,_index_start,_index_end", [DATE_RANGE, TIMEDELTA_RANGE]
- )
- def test_asfreq(series_and_frame, freq, create_index):
- obj = series_and_frame
- result = obj.resample(freq).asfreq()
- new_index = create_index(obj.index[0], obj.index[-1], freq=freq)
- expected = obj.reindex(new_index)
- tm.assert_almost_equal(result, expected)
- @pytest.mark.parametrize(
- "_index_factory,_series_name,_index_start,_index_end", [DATE_RANGE, TIMEDELTA_RANGE]
- )
- def test_asfreq_fill_value(series, create_index):
- # test for fill value during resampling, issue 3715
- ser = series
- result = ser.resample("1H").asfreq()
- new_index = create_index(ser.index[0], ser.index[-1], freq="1H")
- expected = ser.reindex(new_index)
- tm.assert_series_equal(result, expected)
- # Explicit cast to float to avoid implicit cast when setting None
- frame = ser.astype("float").to_frame("value")
- frame.iloc[1] = None
- result = frame.resample("1H").asfreq(fill_value=4.0)
- new_index = create_index(frame.index[0], frame.index[-1], freq="1H")
- expected = frame.reindex(new_index, fill_value=4.0)
- tm.assert_frame_equal(result, expected)
- @all_ts
- def test_resample_interpolate(frame):
- # # 12925
- df = frame
- tm.assert_frame_equal(
- df.resample("1T").asfreq().interpolate(), df.resample("1T").interpolate()
- )
- def test_raises_on_non_datetimelike_index():
- # this is a non datetimelike index
- xp = DataFrame()
- msg = (
- "Only valid with DatetimeIndex, TimedeltaIndex or PeriodIndex, "
- "but got an instance of 'RangeIndex'"
- )
- with pytest.raises(TypeError, match=msg):
- xp.resample("A").mean()
- @all_ts
- @pytest.mark.parametrize("freq", ["M", "D", "H"])
- def test_resample_empty_series(freq, empty_series_dti, resample_method, request):
- # GH12771 & GH12868
- if resample_method == "ohlc" and isinstance(empty_series_dti.index, PeriodIndex):
- request.node.add_marker(
- pytest.mark.xfail(
- reason=f"GH13083: {resample_method} fails for PeriodIndex"
- )
- )
- ser = empty_series_dti
- result = getattr(ser.resample(freq), resample_method)()
- expected = ser.copy()
- expected.index = _asfreq_compat(ser.index, freq)
- tm.assert_index_equal(result.index, expected.index)
- assert result.index.freq == expected.index.freq
- tm.assert_series_equal(result, expected, check_dtype=False)
- @all_ts
- @pytest.mark.parametrize("freq", ["M", "D", "H"])
- def test_resample_nat_index_series(request, freq, series, resample_method):
- # GH39227
- if freq == "M":
- request.node.add_marker(pytest.mark.xfail(reason="Don't know why this fails"))
- ser = series.copy()
- ser.index = PeriodIndex([NaT] * len(ser), freq=freq)
- rs = ser.resample(freq)
- result = getattr(rs, resample_method)()
- if resample_method == "ohlc":
- expected = DataFrame(
- [], index=ser.index[:0].copy(), columns=["open", "high", "low", "close"]
- )
- tm.assert_frame_equal(result, expected, check_dtype=False)
- else:
- expected = ser[:0].copy()
- tm.assert_series_equal(result, expected, check_dtype=False)
- tm.assert_index_equal(result.index, expected.index)
- assert result.index.freq == expected.index.freq
- @all_ts
- @pytest.mark.parametrize("freq", ["M", "D", "H"])
- @pytest.mark.parametrize("resample_method", ["count", "size"])
- def test_resample_count_empty_series(freq, empty_series_dti, resample_method):
- # GH28427
- result = getattr(empty_series_dti.resample(freq), resample_method)()
- index = _asfreq_compat(empty_series_dti.index, freq)
- expected = Series([], dtype="int64", index=index, name=empty_series_dti.name)
- tm.assert_series_equal(result, expected)
- @all_ts
- @pytest.mark.parametrize("freq", ["M", "D", "H"])
- def test_resample_empty_dataframe(empty_frame_dti, freq, resample_method):
- # GH13212
- df = empty_frame_dti
- # count retains dimensions too
- result = getattr(df.resample(freq, group_keys=False), resample_method)()
- if resample_method != "size":
- expected = df.copy()
- else:
- # GH14962
- expected = Series([], dtype=np.int64)
- expected.index = _asfreq_compat(df.index, freq)
- tm.assert_index_equal(result.index, expected.index)
- assert result.index.freq == expected.index.freq
- tm.assert_almost_equal(result, expected)
- # test size for GH13212 (currently stays as df)
- @all_ts
- @pytest.mark.parametrize("freq", ["M", "D", "H"])
- def test_resample_count_empty_dataframe(freq, empty_frame_dti):
- # GH28427
- empty_frame_dti["a"] = []
- result = empty_frame_dti.resample(freq).count()
- index = _asfreq_compat(empty_frame_dti.index, freq)
- expected = DataFrame({"a": []}, dtype="int64", index=index)
- tm.assert_frame_equal(result, expected)
- @all_ts
- @pytest.mark.parametrize("freq", ["M", "D", "H"])
- def test_resample_size_empty_dataframe(freq, empty_frame_dti):
- # GH28427
- empty_frame_dti["a"] = []
- result = empty_frame_dti.resample(freq).size()
- index = _asfreq_compat(empty_frame_dti.index, freq)
- expected = Series([], dtype="int64", index=index)
- tm.assert_series_equal(result, expected)
- @pytest.mark.parametrize("index", tm.all_timeseries_index_generator(0))
- @pytest.mark.parametrize("dtype", [float, int, object, "datetime64[ns]"])
- def test_resample_empty_dtypes(index, dtype, resample_method):
- # Empty series were sometimes causing a segfault (for the functions
- # with Cython bounds-checking disabled) or an IndexError. We just run
- # them to ensure they no longer do. (GH #10228)
- empty_series_dti = Series([], index, dtype)
- try:
- getattr(empty_series_dti.resample("d", group_keys=False), resample_method)()
- except DataError:
- # Ignore these since some combinations are invalid
- # (ex: doing mean with dtype of np.object_)
- pass
- @all_ts
- @pytest.mark.parametrize("freq", ["M", "D", "H"])
- def test_apply_to_empty_series(empty_series_dti, freq):
- # GH 14313
- ser = empty_series_dti
- result = ser.resample(freq, group_keys=False).apply(lambda x: 1)
- expected = ser.resample(freq).apply(np.sum)
- tm.assert_series_equal(result, expected, check_dtype=False)
- @all_ts
- def test_resampler_is_iterable(series):
- # GH 15314
- freq = "H"
- tg = Grouper(freq=freq, convention="start")
- grouped = series.groupby(tg)
- resampled = series.resample(freq)
- for (rk, rv), (gk, gv) in zip(resampled, grouped):
- assert rk == gk
- tm.assert_series_equal(rv, gv)
- @all_ts
- def test_resample_quantile(series):
- # GH 15023
- ser = series
- q = 0.75
- freq = "H"
- result = ser.resample(freq).quantile(q)
- expected = ser.resample(freq).agg(lambda x: x.quantile(q)).rename(ser.name)
- tm.assert_series_equal(result, expected)
|